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Announcements

* Homework 3 due Oct 15

* Midterm on Oct 22



Recap of last week: Convergence Il

Topics covered
* Convergence under transformation

* Delta Method
* Weak Law of Large Numbers

x Central Limit Theorem

Reading
* Recommended: Knight Chp 3.3-3.5
* Additional: Wasserman Chp 5.3-5.5



Applying the WLLN: MC Simlations

Typical format of a statistical methodology paper:

* Introduction
* Methods

* Simulation

* Real Data Analysis

* Discussion

* Supplementary Materials



Simulation

What properties are often of interest in a simulation?




Example 1

JOURNAL ARTICLE
Efficient Evaluation of Prediction Rules in Semi-Supervised
Settings under Stratified Sampling @

Jessica Gronsbell =, Molei Liu, Lu Tian, Tianxi Cai  Author Notes

Journal of the Royal Statistical Society Series B: Statistical Methodology, Volume 84, Issue 4, September 2022,
Pages 1353-1391, https://doi.org/10.1111/rssb.12502
Published: 26 April 2022  Article history v



Example 1

Article Contents
Abstract
1INTRODUCTION
2PRELIMINARIES

3 ESTIMATION PROCEDURE

4 BIAS CORRECTION VIA
ENSEMBLE CROSS-VALIDATION

5ASYMPTOTIC ANALYSIS

6 PERTURBATION RESAMPLING
PROCEDURE FOR INFERENCE

7 SIMULATION STUDIES

8 Example: EHR study of
diabetic neuropathy

9 DISCUSSION
ACKNOWLEDGEMENTS
REFERENCES

Author notes

Supplementary data



Example 1

7 | SIMULATION STUDIES

‘We conducted extensive simulation studies to evaluate the performance of the proposed SSL
procedures and to compare to existing methods. Throughout, we generated p = 10 dimensional
covariates x from N(0, C) with C; = 3(0.4)%!I, Stratified sampling was performed according to
S generated from the following two mechanisms:

1. Se{1,S=2}withS = 1+I(x; + 6; < 0.5) and &, ~ N(0, 1).
2. S€{1,2,3,S=4}withS = 1+ I(x; + 6; < 0.5) + 2I(x3 + 5, < 0.5),5; ~ N(0,1),8, ~ N(0, 1),
and §,.15,.

WeletS = (I(S =1), ... ,I(S = S — 1))". For both settings, we sampled n; = 100 or 200 obser-
vations from each stratum. Throughout, we let v; be the natural spline of x with 3 knots and v, be
the interaction terms {X; : X_1,X> : X_a2)}, whereXx; : X_; and X, : X_(2) represent interaction
terms of x; with the remaining covariates and x, with covariates excluding x; and x, respec-
tively. With 6 = {0,1,1,0.5,0.5, 0p_s)x1 }T and €logistic aNd €oxtreme denoting noise generated from
the logistic and extreme value(—2, 0.3) distributions, we simulated y from the following models:

1. (Meorrect; Leorrect) With correct outcome model and correct imputation model:

y= I(GTX+ €iogistic > 2) and ® = (1, XT,VI» ST)T;



Example 2

JOURNAL ARTICLE

Modified Likelihood root in High Dimensions &
Yanbo Tang ™, Nancy Reid

Journal of the Royal Statistical Society Series B: Statistical Methodology, Volume 82, Issue
5, December 2020, Pages 1349-1369, https://doi.org/10.1111/rssb.12389
Published: 02 August2020  Article history v



Example 2

Article Contents
Summary
1lntroduction

2 Higher order approximations:
definitions and background

3 Analysis of r when pis
increasing with n

4 Deviation from exponentiality
when p is fixed

5 Examples

6 Simulations

7 Discussion
Supporting information
Acknowledgements
References

Supplementary data



Example 2

6 Simulations

6.1 Example: logistic regression
The model is

exp(x[B)

yi ~ Bern(p),pi = TrenptTp)

We generated n vectors x; of length p from a multivariate normal distribution with
E(x;) = 0, var(x;) =1and

cov (%, %) = 0.9V This covariance structure was chosen so that the maximal and
minimal eigenvalues of the covariance matrix are bounded above and below, and the
correlation between x;; and x;, is non-zero. The true values of the regression
coefficients were taken as

Bo =p1 =1and

Bi = 1/\/p fori=2, .., p. The parameter of interest is

b



A common trend: Semi-synthetic data analysis

Synthetic surrogates improve power for genome-wide
association studies of partially missing phenotypesin
population biobanks

Zachary R. McCaw &, Jianhui Gao, Xihong Lin & Jessica Gronsbell &

Nature Genetics 56, 1527-1536 (2024) | Cite this article



From last time: How many simulations are needed?

How many simulations are needed to compute 7 within
+1/1000 with no more than 5% error?




Example: Accuracy of our estimator of 7




Example: Accuracy of our estimator of 7




The Central Limit Theorem (CLT)

Suppose that Xi, ..., X, are iid random variables with mean
pp ) 3
1 and variance 02 < oo. Define

7o Komp V(X p)

\/ Var(X,) a

Then Z, =9 Z ~ N(0,1).

-

Probability statements about X, can be approximated using a
normal distribution.



Proof of the CLT




Proof of the CLT




Proof of the CLT




Proof of the CLT




Today: Inference

Topics covered
* Parametric and nonparametric models

* Concepts of inference

* Properties of estimators

* The empirical CDF

* Statistical functionals
Reading

* Recommended: Knight Chp 4.1-4.2, 4.4-4.5
* Additional: Wasserman Chp 6, 7; Davison Chp 1



Overview

We have now covered concepts that allow to discuss statistical
inference and learning, including:

* Probability

* Random Variables

* Expectation

* Inequalities

* Convergence of Sequences of Random Variables
*

Limit Theorems



Fundamental question of statistical inference

Given a sample Xi, ..., X, ~ F, how do we infer F?




Recall day 1 of class...

Statistical inference is learning about what we do not observe
(parameters) using what we observe (data)



A common example




Terminology for statistical models

Statistical model

A statistical model F is a set of distributions (or densities
or regression functions).




Terminology for statistical models

Parametric model

A parametric model is a set F that can be parameterized
by a finite number of parameters and is written as

F={f(x;0):0<c86}.

0 is the parameter and 6 is the parameter space.




Famous example of a parametric model

Exponential family

We say that the family of densities
F={f(x;0):0€ 86}

is an exponential family if the density or mass function is of
the form

f(x;0) = h(x) exp {n(0) T(x) — A(0)}
where h(x), n(0), T(x), and A() are known functions.




Example: Exponential family

Show that the Poisson distribution is a member of the expo-
nential family.




Example: Exponential family




Example: Exponential family

Recall the mass function of X ~ Poisson(}),

X

P(X=x)=—e’ forx=0,1,...
X

1
which is an exponential family with h(x) = —,
x!

T(x)=x, A(9) = 0.

and 6 ;0



Another famous example of a parametric model

Location-scale family

Let g(x) be any pdf. Then forany 4 € Rand o > 0, the

family of pdfs
1 X — |
f(x|0)=—
10 =26 ()

indexed by 6 = (u,0), is called the location-scale family with
standard pdf g(x) and i and o are called the location param-
eter and scale parameter, respectively.




Terminology for statistical models

Nuisance parameters

If 6 is a vector and we are only interested in a subset of its
components then we refer to the remaining components as
nuisance parameters.




Example: Nuisance parameter

Normal distribution

Suppose that Xi,... X, ~"@ F and assume that the pdf f €
F where

1 1
f:{f(x;,u,o): exp{—7(X—M)2}|/LER,0>O
o
The parameters of this model are 1 and o.

If we are only interested in estimating 1, then o is a nuisance
parameter.




Terminology for statistical models

Identifiable

The parameterization of a statistical model is identifiable if
Fo, = Fp, implies 0; = 0.




Terminology for statistical models

Identifiable

The parameterization of a statistical model is identifiable if
Fo, = Fp, implies 0; = 0.

r

The parameters of an identifiable model are said to be es-
timable.

r




Notation for parametric models

x If Xq,..., X, are iid with density f(x; ) we often write

Po(X € A) :/f(x; f)dx and Ey(g(X)) :/g(x)f(x; 6)dx
A

to indicate that a probability /expectation is with respect to

f(x;0)

* The subscript is sometimes removed in the iid case in defining
probabilities and expectations



Terminology for statistical models

Nonparametric model

A nonparametric model is a set F that cannot be parame-
terized by a finite number of parameters.




Example: Nonparametric model

x Suppose that Xi,... X, ~" F and we are interested in
estimating u = E(X) = [ xdF(x)

* If we are willing to assume that the mean exists, but not
make an assumption about the distribution of X;, then
this is a nonparametric estimation problem

* We view p as a function of F. This is an example of a
statistical functional (more to come on this)




Aside: Moving beyond the binary

AHere, we consider a semi-péj:ametric transformation model for the placAement values:
ho(Uik) = —BiXix + €ik 2.1)

where ho(-) is a completely unspecified increasing function. This model is essentially equivalent to the
semi-parametric ROC model proposed by Cai and Pepe (2002):

ROCx,, () = g {BiXix +ho(w)}, 0<u<l. 22

Cai 2004


https://arxiv.org/pdf/1701.04889.pdf

Aside:

Moving beyond the binary

This adaptive property, often unaddressed in the existing literature,
is crucial for advocating ‘safe’ use of the unlabeled data. The con-
struction of EASE primarily involves a flexible ‘semi-non-parametric’

Chakrabortty & Cai 2017


https://arxiv.org/pdf/1701.04889.pdf

A fundamental example: Regression

Suppose we want to understand the relationship between two
random variables X with Y.

* X is called the covariate/predictor/regressor/feature/
independent variable

x Y is called the outcome/response variable/dependent
variable/target/label




A fundamental example: Regression

Suppose we want to understand the relationship between two
random variables X with Y.

*x r(x) = E(Y|X = x) is the regression function

* The regression function may be used for either estima-
tion or prediction

* If Y is discrete, prediction is called classification




A fundamental example: Regression

Suppose we want to understand the relationship between two
random variables X with Y.
* If r(x) € F where F is parameterized by a finite dimen-
sional parameter then we have a parametric regression
model

* Otherwise, we have a nonparametric regression
model




Simple (parametric) linear regression

Suppose the sample consists of {(X;, Y;)}7_; and we posit the linear

model
r(x) = E(Y | X = x) = o + pix

for By, f1 € R to characterize the relationship between Y and X.



Simple (parametric) linear regression

* We want to estimate 5y and 3; with observed data,
{(xi, ¥i) e

* This is often done with least squares where the objective is
to find By and [3; that minimize

n

> (i = (Bo+ Bix))

i=1

* Note that observed data is denoted with lower case letters



Simple nonparametric regression

Suppose the sample consists of {(X, Y;)}"_;, but we are not willing
to posit a specific functional form for the regression function

r(x) =E(Y | X = x)



Simple nonparametric regression

x The goal is to estimate the r(x)
* This can be done via the Nadaraya-Watson estimator

_ Do Kn(Xi = x)Yi
27:1 Kin(Xi — x)

where Kj(x) = K () is a smooth, symmetric kernel
function and h > 0 is the bandwidth

A(x)




Simple nonparametric regression




Parametric vs. nonparametric regression?

How would you decide between using parametric vs.
nonparametric regression? What are the trade offs?




A world divided: Approaches to inference
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A world divided: Approaches to inference

Frequentist paradigm

Interprets probability as the long term frequency.

In the context of inference, the parameter of interest is a
fixed and unknown and statistical methods have guaranteed

frequency behavior.




A world divided: Approaches to inference

Bayesian paradigm

Interprets probability in a broader sense that includes subjec-
tive probability.

In the context of inference, probability is assigned to almost
every quantity in our model, including the parameter of in-
terest. Statistical methods rely on a simple decision theoretic
rule — if we are competing two or more choices, we always
choose the one with higher probability.




A world divided... not really!

Turning statisticians into BFF-ers: Two conferences in Toronto

June 23, 2022 by Radu Craiu

0000

The month of May has been a happening one for the Department of Statistical Sciences (DSS) at the University
of Toronto. We have started strong by hosting in our new space the 7th Bayesian, Frequentist and Fiducial
conferences on May 2-4, 2022. The event had been originally scheduled to take place in May 2020 and was
delayed because of the COVID pandemic.

The BFF series has traditionally focused on the foundations of statistics, placing emphasis on the three
paradigms that have historically been at the center of our discipline. As stated on the BFF official websitecr,
"The Bayesian, Fiducial, and Frequentist (BFF) community began in 2014 as a means to facilitate scientific
exchange among statisticians and scholars in related fields that develop new methodologies linked to the
foundational principles of statistical inference. The community encourages and promotes research activities to
bridge foundations for statistical inferences, to facilitate objective and replicable scientific learning, and to
develop analytic and computing methodologies for data analysis."

This vear's edition has kent with tradition but has also added comnutational and philosanhical considerations



A world divided... not really!

22

Why does statistics have two theories?

Donald A.S. Fraser
Department of Statistical Sciences
University of Toronto, Toronto, ON

Fraser 2014


https://utstat.toronto.edu/dfraser/documents/266copss.pdf

But, what are the goals of inference?

*x Point estimation
* Interval estimation

* Hypothesis testing



Point estimation

=

Point estimation

Point estimation refers to providing a single “best guess” to
the quantity of interest

A point estimator, QA, for a parameter, 6, based on a random
sample Xi, ... X, is some function of the sample,

~

0=g(Xi,...,X).

Note: Functions of the sample are called statistics.




Properties of an estimator

Finite sample properties

% The bias of an estimator is E(/ — )

* The standard devia‘Eion of 6 is called the standard error
and denoted as se()

x The mean squared error (MSE) is

E(6 — 6)?




Properties of an estimator

Large sample properties

* An estimator is consistent if § —" 6
* An estimator is asymptotically normal if
h—06
se

—9 7 ~ N(0,1)

* The distribution of f is called the sampling distribution




Example: Estimator properties

Show that the MSE can be written as
bias?() + var(d).

Also show that if bias(#) — 0 and var(d) — 0asn — oo,
then @ is consistent for 6.




Example: Estimator properties




Example: Estimator properties

Let § = E(0). Then

EO—0)?=EW0—0+0—0)>
= E(0 —0)>+2E[(0 —0)(0 — 0)] + E(0 — 6)?
— E( —0)?+2(0 — 0)E[(0 — 0)] + E(G — 6)?
— E(6—0)>+ (0 — )

)’
— Var(0) + bias?(0)

Now if blas(9) — 0 and var(d) — 0, it follows that  —9™ 0. This
implies 6 —P 0 so f is consistent for 6.



Example: Estimator properties

Consider a random sample Xi, ... X, arising from a Poisson
distribution with mean p. It can be shown that the maximum
likelihood estimator (MLE) for p is ji = X.

Is /i unbiased? Consistent? Asymptotically normally dis-
tributed?




Example: Estimator properties




Example: Estimator Properties

We know [i = X so

E(p) = ‘1ZEX)—n12u B
Var(fi) = Var(X) = 1Var(X) = p/n.

It then follows that i is unbiased and consistent for . Since
= X, the CLT confirms that /i is asymptotically normal.



Interval estimation

Confidence interval

The 100 x (1 —a)% confidence interval (Cl) for a parameter
0 is an interval C, = (a, b) where a = a(Xy,...,X;) and b =
b(Xi, ..., X,) such that

PO C)>1—a foralldco

1 — « is called the coverage of the interval.




95% confidence interval interpretations

* If we do the same experiment everyday and find an interval for
the parameters 0, then 95% of the intervals we construct we
will contain the true parameter value

* If we do different experiments everyday and find an interval for
different parameters 6y, 05, ..., then 95% of the intervals we
construct we will contain the true parameter value



Example: Interval estimation

Consider a random sample Xi, ... X, arising from a Poisson
distribution with mean p. It can be shown that the maximum
likelihood estimator (MLE) for p is ji = X.

Find a 95% ClI for p.




Example: Interval estimation




Example: Interval estimation

By the CLT and Slutsky's theorem,

\/ﬁ(”—;“) ~ N(0,1).
Vi
It then follows that a 95% Cl can be obtained as
0.95 = P <—1.96 < M < 1.96)
Vi

P <—1.96\/ﬂ/n — < —p < 1.964/f1/n — ﬁ)

=P <ﬁ +1.96\/fi/n > p > 1 —1.96 ﬁ/n>



Hypothesis testing

Hypothesis testing

In hypothesis testing, we start with a default theory called
the null hypothesis. We aim to decide if the data provide
sufficient evidence to reject the null hypothesis.

Testing will be covered in the second half of the course.



Controversy of the p-value
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Controversy of the p-value

N eWS Promoting the Practice and Profession of Statistics®

732 North Washington Street, Alexandria,VA 22314 « (703) 684-1221 «Toll Free: (888) 231-3473 * www.amstat.org * www.twitter.com/AmstatNews

AMERICAN STATISTICAL ASSOCIATION RELEASES STATEMENT ON
STATISTICAL SIGNIFICANCE AND P-VALUES
Provides Principles to Improve the Conduct and Interpretation of Quantitative

Science
March 7, 2016

ASA statement


https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf

Onward: Empirical cumulative distribution function (ecdf)

& ecdf )
Recall that F(x) = P(X < x). Let Xi,..., X, be a random
sample. A reasonable estimate of F(x) is the proportion of
X;'s that are less than or equal to x,

n

Fl) == 310X < x)

i=1

F is the empirical distribution function (ecdf).




Glivenko-Cantelli (GC) Theorem

GC Theorem

F(x) is uniformly consistent for F(x),

sup |F(x) — F(x)| =, 0.

Note: The GC Theorem is typically presented using almost sure
convergence which we did not cover in this course.



Statistical functionals

Statistical functional

A statistical functional, T(F), is a parameter that depends
on the underlying distribution of the data For instance,

= /xdF(x)

7t = [t ulF)2aF(x

If T(F) = [ r(x)dF(x) for a function r(x), then T is a lin-
ear functional.




Example: Statistical functionals

g Question

For two independent random variables, X, Y, with distribu-
tions F and G, respectively, the Mann-Whitney functional is

HEQ:/MG

Show that
Prc(X <Y)=T(F,G).




Example: Statistical functionals




Example: Statistical functionals

Pro(X <Y)= /P(X < Y|Y = y)dG(y)

PIX <y)d6(y) = [ F)dG(y) = T(F.6)



The Substitution Principle

Plug-in Estimator

The substitution principle yields a plug-in estimator for § =
T(F) defined as

0 = T(F).
The plug-in estimator for T(F) = [ h(x)dF(x)is T(F) =
5 i1 h(XG).




Example: The Substitution Principle

Find the plug-in estimator for

o /(x — p)?dF(x).




Example: The Substitution Principle




Example: The Substitution Principle

Note that

o2 = /xzdF(x) - {/xdF(X)}2

so the plug-in estimator is

n n 2
62=n""! ZX,? — {nl ZX;}
i=1 i=1

S zn:(x,- ~ X\
i=1



