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Announcements

⋆ Homework 3 due Oct 15

⋆ Midterm on Oct 22



Recap of last week: Convergence II

Topics covered

⋆ Convergence under transformation

⋆ Delta Method

⋆ Weak Law of Large Numbers

⋆ Central Limit Theorem

Reading

⋆ Recommended: Knight Chp 3.3-3.5

⋆ Additional: Wasserman Chp 5.3-5.5



Applying the WLLN: MC Simlations

Typical format of a statistical methodology paper:

⋆ Introduction

⋆ Methods

⋆ Simulation

⋆ Real Data Analysis

⋆ Discussion

⋆ Supplementary Materials



Simulation

What properties are often of interest in a simulation?

Question



Example 1



Example 1



Example 1



Example 2



Example 2



Example 2



A common trend: Semi-synthetic data analysis



From last time: How many simulations are needed?

How many simulations are needed to compute π within
±1/1000 with no more than 5% error?

Question



Example: Accuracy of our estimator of π



Example: Accuracy of our estimator of π



The Central Limit Theorem (CLT)

Suppose that X1, . . . ,Xn are iid random variables with mean
µ and variance σ2 < ∞. Define

Zn =
X̄n − µ√
Var(X̄n)

=

√
n(X̄n − µ)

σ
.

Then Zn →d Z ∼ N(0, 1).

CLT

Probability statements about X̄n can be approximated using a
normal distribution.



Proof of the CLT



Proof of the CLT



Proof of the CLT



Proof of the CLT



Today: Inference

Topics covered

⋆ Parametric and nonparametric models

⋆ Concepts of inference

⋆ Properties of estimators

⋆ The empirical CDF

⋆ Statistical functionals

Reading

⋆ Recommended: Knight Chp 4.1-4.2, 4.4-4.5

⋆ Additional: Wasserman Chp 6, 7; Davison Chp 1



Overview

We have now covered concepts that allow to discuss statistical
inference and learning, including:

⋆ Probability

⋆ Random Variables

⋆ Expectation

⋆ Inequalities

⋆ Convergence of Sequences of Random Variables

⋆ Limit Theorems



Fundamental question of statistical inference

Given a sample X1, . . . ,Xn ∼ F , how do we infer F?



Recall day 1 of class...

Statistical inference is learning about what we do not observe
(parameters) using what we observe (data)



A common example



Terminology for statistical models

A statistical model F is a set of distributions (or densities
or regression functions).

Statistical model



Terminology for statistical models

A parametric model is a set F that can be parameterized
by a finite number of parameters and is written as

F = {f (x ; θ) : θ ∈ θ} .

θ is the parameter and θ is the parameter space.

Parametric model



Famous example of a parametric model

We say that the family of densities

F = {f (x ; θ) : θ ∈ θ}

is an exponential family if the density or mass function is of
the form

f (x ; θ) = h(x) exp {η(θ)T (x)− A(θ)}

where h(x), η(θ), T (x), and A(θ) are known functions.

Exponential family



Example: Exponential family

Show that the Poisson distribution is a member of the expo-
nential family.

Question



Example: Exponential family



Example: Exponential family

Recall the mass function of X ∼ Poisson(λ),

P(X = x) =
θx

x!
e−θ for x = 0, 1, . . . and θ ¿0

We can write the mass function as

P(X = x) =
θx

x!
e−θ

=
1

x!
e log(θ)x−θ

which is an exponential family with h(x) =
1

x!
, η(θ) = log(θ),

T (x) = x , A(θ) = θ.



Another famous example of a parametric model

Let g(x) be any pdf. Then for any µ ∈ R and σ > 0, the
family of pdfs

f (x | θ) = 1

σ
g

(
x − µ

σ

)
indexed by θ = (µ, σ), is called the location-scale family with
standard pdf g(x) and µ and σ are called the location param-
eter and scale parameter, respectively.

Location-scale family



Terminology for statistical models

If θ is a vector and we are only interested in a subset of its
components then we refer to the remaining components as
nuisance parameters.

Nuisance parameters



Example: Nuisance parameter

Suppose that X1, . . .Xn ∼iid F and assume that the pdf f ∈
F where

F =

{
f (x ;µ, σ) =

1

σ
√
2π

exp

{
− 1

2σ2
(x − µ)2

}
| µ ∈ R, σ > 0

}
The parameters of this model are µ and σ.

If we are only interested in estimating µ, then σ is a nuisance
parameter.

Normal distribution



Terminology for statistical models

The parameterization of a statistical model is identifiable if
Fθ1 = Fθ2 implies θ1 = θ2.

Identifiable

The parameters of an identifiable model are said to be es-
timable.

Estimable



Terminology for statistical models

The parameterization of a statistical model is identifiable if
Fθ1 = Fθ2 implies θ1 = θ2.

Identifiable

The parameters of an identifiable model are said to be es-
timable.

Estimable



Notation for parametric models

⋆ If X1, . . . ,Xn are iid with density f (x ; θ) we often write

Pθ(X ∈ A) =

∫
A

f (x ; θ)dx and Eθ(g(X )) =

∫
g(x)f (x ; θ)dx

to indicate that a probability/expectation is with respect to
f (x ; θ)

⋆ The subscript is sometimes removed in the iid case in defining
probabilities and expectations



Terminology for statistical models

A nonparametric model is a set F that cannot be parame-
terized by a finite number of parameters.

Nonparametric model



Example: Nonparametric model

⋆ Suppose that X1, . . .Xn ∼iid F and we are interested in
estimating µ = E (X ) =

∫
xdF (x)

⋆ If we are willing to assume that the mean exists, but not
make an assumption about the distribution of Xi , then
this is a nonparametric estimation problem

⋆ We view µ as a function of F . This is an example of a
statistical functional (more to come on this)

First moment



Aside: Moving beyond the binary

Cai 2004

https://arxiv.org/pdf/1701.04889.pdf


Aside: Moving beyond the binary

Chakrabortty & Cai 2017

https://arxiv.org/pdf/1701.04889.pdf


A fundamental example: Regression

Suppose we want to understand the relationship between two
random variables X with Y .

⋆ X is called the covariate/predictor/regressor/feature/
independent variable

⋆ Y is called the outcome/response variable/dependent
variable/target/label

Definitions



A fundamental example: Regression

Suppose we want to understand the relationship between two
random variables X with Y .

⋆ r(x) = E (Y |X = x) is the regression function

⋆ The regression function may be used for either estima-
tion or prediction

⋆ If Y is discrete, prediction is called classification

Definitions



A fundamental example: Regression

Suppose we want to understand the relationship between two
random variables X with Y .

⋆ If r(x) ∈ F where F is parameterized by a finite dimen-
sional parameter then we have a parametric regression
model

⋆ Otherwise, we have a nonparametric regression
model

Definitions



Simple (parametric) linear regression

Suppose the sample consists of {(Xi ,Yi)}ni=1 and we posit the linear
model

r(x) = E (Y | X = x) = β0 + β1x

for β0, β1 ∈ R to characterize the relationship between Y and X .



Simple (parametric) linear regression

⋆ We want to estimate β0 and β1 with observed data,
{(xi , yi)}ni=1

⋆ This is often done with least squares where the objective is
to find β0 and β1 that minimize

n∑
i=1

(yi − (β0 + β1xi))
2

⋆ Note that observed data is denoted with lower case letters



Simple nonparametric regression

Suppose the sample consists of {(Xi ,Yi)}ni=1, but we are not willing
to posit a specific functional form for the regression function

r(x) = E (Y | X = x)



Simple nonparametric regression

⋆ The goal is to estimate the r(x)

⋆ This can be done via the Nadaraya-Watson estimator

r̂(x) =

∑n
i=1Kh(Xi − x)Yi∑n
i=1Kh(Xi − x)

where Kh(x0) = K
(
x−x0
h

)
is a smooth, symmetric kernel

function and h > 0 is the bandwidth



Simple nonparametric regression



Parametric vs. nonparametric regression?

How would you decide between using parametric vs.
nonparametric regression? What are the trade offs?

Question



A world divided: Approaches to inference



A world divided: Approaches to inference

Interprets probability as the long term frequency.

In the context of inference, the parameter of interest is a
fixed and unknown and statistical methods have guaranteed
frequency behavior.

Frequentist paradigm



A world divided: Approaches to inference

Interprets probability in a broader sense that includes subjec-
tive probability.

In the context of inference, probability is assigned to almost
every quantity in our model, including the parameter of in-
terest. Statistical methods rely on a simple decision theoretic
rule – if we are competing two or more choices, we always
choose the one with higher probability.

Bayesian paradigm



A world divided... not really!



A world divided... not really!

Fraser 2014

https://utstat.toronto.edu/dfraser/documents/266copss.pdf


But, what are the goals of inference?

⋆ Point estimation

⋆ Interval estimation

⋆ Hypothesis testing

⋆ . . .



Point estimation

Point estimation refers to providing a single “best guess” to
the quantity of interest

A point estimator, θ̂, for a parameter, θ, based on a random
sample X1, . . .Xn is some function of the sample,

θ̂ = g(X1, . . . ,Xn).

Point estimation

Note: Functions of the sample are called statistics.



Properties of an estimator

⋆ The bias of an estimator is E (θ̂ − θ)

⋆ The standard deviation of θ̂ is called the standard error
and denoted as se(θ̂)

⋆ The mean squared error (MSE) is

E (θ̂ − θ)2

Finite sample properties



Properties of an estimator

⋆ An estimator is consistent if θ̂ →p θ

⋆ An estimator is asymptotically normal if

θ̂ − θ

se
→d Z ∼ N(0, 1)

⋆ The distribution of θ̂ is called the sampling distribution

Large sample properties



Example: Estimator properties

Show that the MSE can be written as

bias2(θ̂) + var(θ̂).

Also show that if bias(θ̂) → 0 and var(θ̂) → 0 as n → ∞,

then θ̂ is consistent for θ.

Question



Example: Estimator properties



Example: Estimator properties

Let θ̄ = E (θ̂). Then

E (θ̂ − θ)2 = E (θ̂ − θ̄ + θ̄ − θ)2

= E (θ̂ − θ̄)2 + 2E [(θ̂ − θ̄)(θ̄ − θ)] + E (θ̄ − θ)2

= E (θ̂ − θ̄)2 + 2(θ̄ − θ)E [(θ̂ − θ̄)] + E (θ̄ − θ)2

= E (θ̂ − θ̄)2 + (θ̄ − θ)2

= Var(θ̂) + bias2(θ̂)

Now if bias(θ̂) → 0 and var(θ̂) → 0, it follows that θ̂ →qm θ. This

implies θ̂ →p θ so θ̂ is consistent for θ.



Example: Estimator properties

Consider a random sample X1, . . .Xn arising from a Poisson
distribution with mean µ. It can be shown that the maximum
likelihood estimator (MLE) for µ is µ̂ = X .

Is µ̂ unbiased? Consistent? Asymptotically normally dis-
tributed?

Question



Example: Estimator properties



Example: Estimator Properties

We know µ̂ = X so

E (µ̂) = E (X ) = n−1
n∑

i=1

E (Xi) = n−1
n∑

i=1

µ = µ

Var(µ̂) = Var(X ) = n−1Var(Xi) = µ/n.

It then follows that µ̂ is unbiased and consistent for µ. Since
µ̂ = X , the CLT confirms that µ̂ is asymptotically normal.



Interval estimation

The 100×(1−α)% confidence interval (CI) for a parameter
θ is an interval Cn = (a, b) where a = a(X1, . . . ,Xn) and b =
b(X1, . . . ,Xn) such that

P(θ ∈ Cn) ≥ 1− α for all θ ∈ θ

1− α is called the coverage of the interval.

Confidence interval



95% confidence interval interpretations

⋆ If we do the same experiment everyday and find an interval for
the parameters θ, then 95% of the intervals we construct we
will contain the true parameter value

⋆ If we do different experiments everyday and find an interval for
different parameters θ1, θ2, . . . , then 95% of the intervals we
construct we will contain the true parameter value



Example: Interval estimation

Consider a random sample X1, . . .Xn arising from a Poisson
distribution with mean µ. It can be shown that the maximum
likelihood estimator (MLE) for µ is µ̂ = X .

Find a 95% CI for µ.

Question



Example: Interval estimation



Example: Interval estimation

By the CLT and Slutsky’s theorem,
√
n(µ̂− µ)√

µ̂
∼ N(0, 1).

It then follows that a 95% CI can be obtained as

0.95 = P

(
−1.96 ≤

√
n(µ̂− µ)√

µ̂
≤ 1.96

)
= P

(
−1.96

√
µ̂/n − µ̂ ≤ −µ ≤ 1.96

√
µ̂/n − µ̂

)
= P

(
µ̂+ 1.96

√
µ̂/n ≥ µ ≥ µ̂− 1.96

√
µ̂/n

)



Hypothesis testing

In hypothesis testing, we start with a default theory called
the null hypothesis. We aim to decide if the data provide
sufficient evidence to reject the null hypothesis.

Hypothesis testing

Testing will be covered in the second half of the course.



Controversy of the p-value



Controversy of the p-value

ASA statement

https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf


Onward: Empirical cumulative distribution function (ecdf)

Recall that F (x) = P(X ≤ x). Let X1, . . . ,Xn be a random
sample. A reasonable estimate of F (x) is the proportion of
Xi ’s that are less than or equal to x ,

F̂ (x) =
1

n

n∑
i=1

I (Xi ≤ x)

F̂ is the empirical distribution function (ecdf).

ecdf



Glivenko-Cantelli (GC) Theorem

F̂ (x) is uniformly consistent for F (x),

sup
x

|F̂ (x)− F (x)| →p 0.

GC Theorem

Note: The GC Theorem is typically presented using almost sure
convergence which we did not cover in this course.



Statistical functionals

A statistical functional, T (F ), is a parameter that depends
on the underlying distribution of the data For instance,

µ =

∫
xdF (x)

σ2 =

∫
(x − µ(F ))2dF (x)

If T (F ) =
∫
r(x)dF (x) for a function r(x), then T is a lin-

ear functional.

Statistical functional



Example: Statistical functionals

For two independent random variables, X ,Y , with distribu-
tions F and G , respectively, the Mann-Whitney functional is

T (F ,G ) =

∫
FdG

Show that
PF ,G (X ≤ Y ) = T (F ,G ).

Question



Example: Statistical functionals



Example: Statistical functionals

PF ,G (X ≤ Y ) =

∫
P(X ≤ Y |Y = y)dG (y)

=

∫
P(X ≤ y)dG (y) =

∫
F (y)dG (y) = T (F ,G )



The Substitution Principle

The substitution principle yields a plug-in estimator for θ =
T (F ) defined as

θ̂ = T (F̂ ).

The plug-in estimator for T (F ) =
∫
h(x)dF (x) is T (F̂ ) =

1
n

∑n
i=1 h(Xi).

Plug-in Estimator



Example: The Substitution Principle

Find the plug-in estimator for

σ2 =

∫
(x − µ)2dF (x).

Question



Example: The Substitution Principle



Example: The Substitution Principle

Note that

σ2 =

∫
x2dF (x)−

{∫
xdF (x)

}2

so the plug-in estimator is

σ̂2 = n−1
n∑

i=1

X 2
i −

{
n−1

n∑
i=1

Xi

}2

= n−1
n∑

i=1

(Xi − X̄ )2.


