Exercise 5: Statistical inference (II)

Siyue Yang

05/21/2022

EM and Newton-Raphson implementation

The ABO-gene or ABO-locus is on chromosome 9. It has 3 alleles (antigens) (A, B, O) and it determines 4 blood type (A, B, AB, O).

```
genotype phenotype
AA AO A
BB BO B
AB AB
OO O
```

```
A, B are dominant to O.

O is recessive to A, B.
```

A, B are co-dominant.

We have a large random sample obtained from Berlin (Bernstein 1925, Sham's book page 44):

- $n_A = 9123$ blood type A
- $n_B = 2987$ blood type B
- $n_{AB} = 1269$ blood type AB
- $n_O = 7725$ blood type O

For instance, $n_A = 9123 = n_{AA} + n_{AO}$: Among 9123 blood type A individuals, some have genotype AA and the others have genotype AO.

Our interest is to estimate the allele frequencies of alleles A, B, and O. i.e. p = freq (allele A), q = freq (allele B), 1 - p - q = freq (allele O).

- 1. Write out the log-likelihood L(p,q).
- 2. Is there a closed-form solution of this log-likelihood function?
- 3. Formulate the problem as a missing data problem and use the Newton-Raphson algorithm to find the MLEs, \hat{p} and \hat{q} , that maximize the log-likelihood, $\ln L(p,q)$.
- 4. (Advanced) Use the EM algorithm to find the Maximum Likelihood Estimates (MLEs) of parameters, \hat{p} and \hat{q} .

Hint: Lei Sun's STA2080 Modern genetic statistics notes (link).