Exercise 6: Statistical inference (III)

July 19, 2023

Part 1: Wald, Score, and likelihood ratio test statistics

Write out the likelihood function, and derive the test statistics of the Wald, Score, and likelihood ratio test.

1.
$$X_i \stackrel{\text{i.i.d.}}{\sim} f(x \mid \theta)$$

$$f(x \mid \theta) = \theta \exp(-x\theta) \mathbb{I}\{x > 0\}$$

2.
$$X_i \stackrel{\text{i.i.d.}}{\sim} f(x \mid \theta)$$

 $f(x \mid \theta) = \theta c^{\theta} x^{-(\theta+1)} \mathbb{I}\{x > c\}$ (Pareto distribution)

where c is a known constant and θ is unknown.

Part 2: Test equivalence

Let θ be a scalar parameter and suppose we test

$$H_0: \theta = \theta_0$$
 versus $H_1: \theta \neq \theta_0$.

Let W be the Wald test statistic and let λ be the likelihood ratio test statistic. Show that these tests are equivalent in the sense that

$$\frac{W^2}{\lambda} \stackrel{\mathrm{P}}{\longrightarrow} 1$$

as $n \to \infty$. Hint: Use a Taylor expansion of the log-likelihood $\ell(\theta)$ to show that

$$\lambda \approx \left(\sqrt{n}\left(\widehat{\theta} - \theta_0\right)\right)^2 \left(-\frac{1}{n}\ell''(\widehat{\theta})\right)$$