Module 4: Statistical inference (I)

Siyue Yang

$$
05 / 10 / 2022
$$

Outline

This module we will review

- Basics of probability
- Fundamental concepts in inference

Probability distributions

- In statistics, we try to draw conclusions about a larger population from a sample of observations.
- We use mathematical models to capture probabilistic behavior of a population.
- This behavior is modeled using probability distributions.

Density/Distribution functions

Definition (Cumulative Distribution Function)

$$
F_{X}(x)=P(X \leq x) \quad \forall x \in \mathbb{R}
$$

Density/Distribution functions (cont'd)

Definition (Probability Mass Function)

For a discrete $R V$, the probability mass function (PMF) is:

$$
f_{X}(x)=P(X=x) \quad \forall x \in \mathbb{R}
$$

Definition (Probability Density Function)

For a continuous RV, the probability density function (PDF) is:

$$
f_{X}(x)=\left.\frac{\partial}{\partial t} F(t)\right|_{t=x}
$$

So $F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t \forall x \in \mathbb{R}$.

Note that $f_{X} \geq 0$ for $\forall x$, and thus F_{X} is an increasing function.

Expectation and Variance

Definition (Expectation)

A measure of central tendancy (a weighted average of the values of X)

$$
\begin{aligned}
& E[X]=\sum_{x \in S} x P(X=x) \text { for discrete RV taking values from } S \\
& E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x \text { for continuous RV }
\end{aligned}
$$

Definition (Variance)

A measure of the spread of a distribution

$$
\begin{aligned}
& \operatorname{Var}(X)=\sum_{x \in S}(x-E[X])^{2} P(X=x) \text { for discrete RV } \\
& \operatorname{Var}(X)=\int_{-\infty}^{\infty}(x-E[X])^{2} f_{X}(x) d x \text { for continuous RV }
\end{aligned}
$$

Discreate random variable

A discrete random variable has a countable number of possible values.

Bernoulli and Binomial random variable

- Consider the event of flipping a (possibly unfair) coin.
- $Y \in\{0,1\}$ represents success and failure.
- Suppose we only flip the coin once,
- We can express $P(Y=1)=p$ and $P(Y=0)=1-p$
- Bernoulli distribution

$$
P(Y=y)=p^{y}(1-p)^{1-y} \quad \text { for } \quad y=0,1
$$

- If we flip the coin n times,
- Binomial distribution

$$
P(Y=y)=\binom{n}{y} p^{y}(1-p)^{n-y} \quad \text { for } \quad y=0,1, \ldots, n
$$

Binomial distributions with different values of n and p

 If $Y \sim \operatorname{Binomial}(n, p)$, then $\mathrm{E}(Y)=n p$ and $\mathrm{SD}(Y)=\sqrt{n p(1-p)}$.$\mathrm{n}=10 \mathrm{p}=0.25$

$$
\mathrm{n}=50 \mathrm{p}=0.2
$$

Figure 1: Binomial distributions with different values of n and p.

How to generate in R ?

All common distributions have four functions in R :

- Density dbinom(x, size, prob)
- Distribution function pbinom(q, size, prob)
- Quantile function qbinom(p, size, prob)
- Random generaation rbinom(n, size, prob)

Not sure? Using ? with any of the four functions, e.g. ?qbinom

Example of binomial distribution computing

Question: While taking a multiple choice test, a student encountered 10 problems where she ended up completely guessing, randomly selecting one of the four options. What is the chance that she got exactly 2 of the 10 correct?

Example of binomial distribution computing

Question: While taking a multiple choice test, a student encountered 10 problems where she ended up completely guessing, randomly selecting one of the four options. What is the chance that she got exactly 2 of the 10 correct?

Answer: Knowing that the student randomly selected her answers, we assume she has a 25% chance of a correct response.

$$
P(Y=2)=\binom{10}{2}(.25)^{2}(.75)^{8}=0.282
$$

Example of binomial distribution computing

Question: While taking a multiple choice test, a student encountered 10 problems where she ended up completely guessing, randomly selecting one of the four options. What is the chance that she got exactly 2 of the 10 correct?

Answer: Knowing that the student randomly selected her answers, we assume she has a 25% chance of a correct response.

$$
P(Y=2)=\binom{10}{2}(.25)^{2}(.75)^{8}=0.282
$$

R computing:

dbinom(2, size $=10$, prob $=.25$)
\#\# [1] 0.2815676

Geometric random variables

- Suppose we are to perform independent, identical Bernoulli trials until the first success.
- If we wish to model Y, the number of failures before the first success
- Geometric distribution

$$
P(Y=y)=(1-p)^{y} p \quad \text { for } \quad y=0,1, \ldots, \infty
$$

Geometric distributions with $p=0.3,0.5$ and 0.7 If $Y \sim \operatorname{Geometric}(p)$, then $E(Y)=\frac{1-p}{p}$ and $S D(Y)=\sqrt{\frac{1-p}{p^{2}}}$.

Figure 2: Geometric distributions with $p=0.3,0.5$ and 0.7 .

Negative binomial random variable

- If we were to carry out multiple independent and identical Bernoulli trails until the $r^{\text {th }}$ success occurs.
- Y, the number of failures before the $r^{\text {th }}$ success
- Negative binomial distributions

$$
P(Y=y)=\binom{y+r-1}{r-1}(1-p)^{y}(p)^{r} \quad \text { for } \quad y=0,1, \ldots, \infty
$$

- When $r=1$, the geometric distribution is a special case of negative binomial distribution.

Negative binomial distributions with different p and r If $Y \sim \mathrm{NB}(r, p)$ then $E(Y)=\frac{r(1-p)}{p}$ and $S D(Y)=\sqrt{\frac{r(1-p)}{p^{2}}}$.

Figure 3: Negative binomial distributions with different values of p and r.

Hypergeometric random variable

- Bernoulli process assumes the probability of a success remained constant across all trials.
- What if this probability is dynamic?

Hypergeometric random variable

- Bernoulli process assumes the probability of a success remained constant across all trials.
- What if this probability is dynamic?
- Suppose we wanted to select n items without replacement from a collection of N objects, m of which are considered successes?
- The probability of selecting a "success" depends on the previous selections.
- Y, the number of successes after n selections
- Hypergeometric random variable

$$
P(Y=y)=\frac{\binom{m}{y}\binom{N-m}{n-y}}{\binom{N}{n}} \quad \text { for } \quad y=0,1, \ldots, \min (m, n)
$$

Hypergeometric distributions with m, N, and n

Y follows a hypergeometric distribution and we define $p=m / N$, then $E(Y)=n p$ and $S D(Y)=\sqrt{n p(1-p) \frac{N-n}{N-1}}$.

Figure 4: Hypergeometric distributions with different values of m, N, and n

Poisson random variable

- In a Poisson process, we are counting the number of events per unit of time or space and the number of events depends only on the length or size of the interval.
- Y, the number of events
- Poisson distribution

$$
P(Y=y)=\frac{e^{-\lambda} \lambda^{y}}{y!} \quad \text { for } \quad y=0,1, \ldots, \infty
$$

where λ is the mean or expected count in the unit of time or space of interest.

Poisson distributions with $\lambda=0.5,1$, and 5

$$
E(Y)=\lambda \text { and } S D(Y)=\sqrt{\lambda}
$$

Poisson lambda = 1

Poisson lambda $=5$

Continuous random variable

A continuous random variable can take on an uncountably infinite number of values. Given a pdf $f(y)$,

$$
P(a \leq Y \leq b)=\int_{a}^{b} f(y) d y
$$

Properties:

- $\int_{-\infty}^{\infty} f(y) d y=1$.
- For any value $y, P(Y=y)=\int_{y}^{y} f(y) d y=0$.

$$
P(y<Y)=P(y \leq Y)
$$

Exponential random variable

- Suppose we have a Poisson process with rate λ
- To model the wait time Y until the first event
- Exponential distribution

$$
f(y)=\lambda e^{-\lambda y} \quad \text { for } \quad y>0,
$$

Exponential distributions with $\lambda=0.5,1$, and 5

$E(Y)=1 / \lambda$ and $S D(Y)=1 / \lambda$

Exponential Distributions

Gamma random variable

- Consider a Poisson process.
- Y, waiting time before 1 event occurred, follows an exponential distribution.
- Y, waiting time before r events occurred, follows a gamma distribution.

$$
f(y)=\frac{\lambda^{r}}{\Gamma(r)} y^{r-1} e^{-\lambda y} \quad \text { for } \quad y>0
$$

- When $r=1$, the exponential distribution is a special case of gamma distribution.

Gamma distributions with different values of r and λ

If $Y \sim \operatorname{Gamma}(r, \lambda)$ then $E(Y)=r / \lambda$ and $S D(Y)=\sqrt{r / \lambda^{2}}$.

Normal random variable

$Y \in N\left(\mu, \sigma^{2}\right), \mathrm{E}(Y)=\mu$ and $\mathrm{SD}(Y)=\sigma$.

Normal Distributions

Beta random variable

We often use beta random variables to model distributions of probabilities defined on the interval $[0,1]$.

$$
f(y)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} y^{\alpha-1}(1-y)^{\beta-1} \quad \text { for } \quad 0<y<1
$$

- If $\alpha=\beta=1$, it follows a uniform distribution,

$$
\begin{aligned}
f(y) & =\frac{\Gamma(1)}{\Gamma(1) \Gamma(1)} y^{0}(1-y)^{0} \\
& =1 \quad \text { for } \quad 0<y<1 .
\end{aligned}
$$

Beta distributions with different values of α and β

$Y \sim \operatorname{Beta}(\alpha, \beta)$, then $E(Y)=\alpha /(\alpha+\beta)$ and $S D(Y)=\sqrt{\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}}$.

Beta distributions with different values of α and β

$Y \sim \operatorname{Beta}(\alpha, \beta)$, then $E(Y)=\alpha /(\alpha+\beta)$ and $S D(Y)=\sqrt{\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}}$.

Note that when $\alpha=\beta$, distributions are symmetric. The distribution is left-skewed when $\alpha>\beta$ and right-skewed when $\beta>\alpha$.

Distributions used in testing

- χ^{2} distribution
- t distribution
- F distribution

Some probability distributions in R

Continuous

- Normal (?rnorm)
- Uniform (?runif)
- Beta (?rbeta)
- Chi-sq (?rchisq)
- Exponential (?rexp)
- t (rt)
- F (?rf)
- Logistic (?rlogis)
- Lognormal (?rlnorm)

Discrete

- Poisson (?rpois)
- Binomial (?rbinom)
- Geometric (?rgeom)
- Negative Binomial (?rnbinom)
- Multinomial (?rmultinom)

Empirical vs. Theoretical CDF

In statistics, an empirical distribution function is the distribution function associated with the empirical measure of a sample.

- Theoretical CDF

$$
F_{X}(k)=\operatorname{Pr}(X \leq k)
$$

- Empirical CDF

$$
\hat{F}_{n}(k)=\frac{\text { number of elements in the sample } \leq k}{n}=\frac{1}{n} \sum_{i=1}^{n} I_{X_{i} \leq k}
$$

where X_{1}, \ldots, X_{n} make up some random sample from the underlying distribution.

Probability and inference

Probability and inference

Inference and Data Mining

- Probability: Given a data generating process, what are the properties of the outcomes?
- Statistical inference: Given the outcomes, what can we say about the process that generated the data?

Parametric vs. Nonparametric models

- Statistical model \mathfrak{F} : a set of distributions (or densities or regression functions)

Parametric vs. Nonparametric models

- Statistical model \mathfrak{F} : a set of distributions (or densities or regression functions)
- Parametric model: a set \mathfrak{F} that can be parameterized by a finite number of parameters

$$
\mathfrak{F}=\{f(x ; \theta): \theta \in \Theta\}
$$

where θ is an unknown parameter (or vector of parameters) that can take values in the parameter space Θ.

- e.g. Normal distribution, a 2-parameter model with density as $f(x ; \mu, \sigma)$

Parametric vs. Nonparametric models

- Statistical model \mathfrak{F} : a set of distributions (or densities or regression functions)
- Parametric model: a set \mathfrak{F} that can be parameterized by a finite number of parameters

$$
\mathfrak{F}=\{f(x ; \theta): \theta \in \Theta\}
$$

where θ is an unknown parameter (or vector of parameters) that can take values in the parameter space Θ.

- e.g. Normal distribution, a 2-parameter model with density as $f(x ; \mu, \sigma)$
- Nonparametric model: a set \mathfrak{F} that cannot be parameterized by a finite number of parameters
- e.g. $\mathfrak{F}_{\mathrm{ALL}}=\left\{\right.$ all $\left.\mathrm{CDF}^{\prime} s\right\}$ is nonparametric.

Frequentist, Bayesian, Fiducial inference (BFF)

- Frequentist: statistical methods with guaranteed frequency behavior
- Bayesian: statistical methods for using data to update beliefs
- Fiducial: statistical methods based on inverse probability without calling on prior probability distributions

Difference: math details, interpretation, replication

- Frequentist: modeling collection of distributions $\mathcal{P}=\left\{P_{\xi}\right\}_{\xi \in \equiv}$
- parameter ξ_{0} fixed, data \times replicated

- Bayesian: modeling one joint distribution $f(x \mid \xi) \cdot \pi(\xi)$
- data x_{0} fixed, parameter ξ replicated

- Fiducial: modeling data generating algorithm $\boldsymbol{x}=G(\boldsymbol{u}, \xi)$
- data x \& parameter ξ linked through DGA, auxiliary variable u replicated

Fundamental concepts in inference

- Point estimation
- Hypothesis testing
- Confidence sets

Point estimation

- Providing a single "best guess" of some quantity of interest
- Notations
- Parameter θ : fixed, unknown quantity
- Point estimator $\hat{\theta}$: depends on data, random variable

Point estimation

- Providing a single "best guess" of some quantity of interest
- Notations
- Parameter θ : fixed, unknown quantity
- Point estimator $\hat{\theta}$: depends on data, random variable

Definition (Point estimator)

Let X_{1}, \ldots, X_{n} be n IID data points from some distribution F. A point estimator $\hat{\theta}_{n}$ of a parameter θ is some function of X_{1}, \ldots, X_{n} :

$$
\hat{\theta}_{n}=g\left(X_{1}, \ldots, X_{n}\right)
$$

- Properties
- Unbiasedness
- Consistency
- Efficiency

Point estimation (cont'd)

- Bias

$$
\operatorname{bias}\left(\widehat{\theta}_{n}\right)=\mathbb{E}_{\theta}\left(\hat{\theta}_{n}\right)-\theta
$$

- Consistency

$$
\widehat{\theta}_{n} \xrightarrow{\mathrm{P}} \theta
$$

- Standard error

$$
\operatorname{se}=\operatorname{se}\left(\hat{\theta}_{n}\right)=\sqrt{\mathbb{V}\left(\hat{\theta}_{n}\right)}
$$

- Mean square error

$$
\mathrm{MSE}=\mathbb{E}_{\theta}\left(\widehat{\theta}_{n}-\theta\right)^{2}
$$

Confidence sets

Definition (Confidence set)

A $1-\alpha$ confidence interval for a parameter θ is an interval $C_{n}=(a, b)$ where $a=a\left(X_{1}, \ldots, X_{n}\right)$ and $b=b\left(X_{1}, \ldots, X_{n}\right)$ are functions of the data such that

$$
\mathbb{P}_{\theta}\left(\theta \in C_{n}\right) \geq 1-\alpha \quad \forall \theta \in \Theta
$$

- If θ is a vector, we use Confidence sets instead of Confidence intervals.
- In Frequentist, θ is fixed while C_{n} is random.
- Confidence interval is not a probability statement about θ.
- In Bayesian, θ is random.
- Bayesian interval refers to degree-of-belief probabilities.

Hypothesis testing

Definition (Hypothesis testing)

Suppose that we partition the parameter space Θ into two disjoint sets Θ_{0} and Θ_{1} and that we wish to test

$$
H_{0}: \theta \in \Theta_{0} \quad \text { versus } \quad H_{1}: \theta \in \Theta_{1}
$$

We call H_{0} the null hypothesis and H_{1} the alternative hypothesis.

Hypothesis testing (cont'd)

Let X be a random variable, \mathcal{X} be the range of X. We test a hypothesis by finding the rejection region $R \subset \mathcal{X}$,

$$
\begin{array}{lll}
X \in R & \Longrightarrow & \text { reject } H_{0} \\
X \notin R & \Longrightarrow & \text { retain (do not reject) } H_{0}
\end{array}
$$

Common form of R,

$$
R=\{x: T(x)>c\}
$$

where T is a test statistic and c is a critical value.

Hypothesis testing (cont'd)

- Type I error: Rejecting H_{0} when H_{0} is true
- Type II error: Retaining H_{0} when H_{1} is true

Definition (Power function)

The power function of a test with rejection region R is defined by

$$
\beta(\theta)=\mathbb{P}_{\theta}(X \in R)
$$

The size of a test is defined to be

$$
\alpha=\sup _{\theta \in \Theta_{0}} \beta(\theta) .
$$

A test is said to have level α if its size is less than or equal to α.

Resources

This tutorial is based on

- Havard Biostatistics Summer Pre Course [link]
- "Beyond Multiple Linear Regression" by Paul Roback and Julie Legler [link]
- "Short course on Generalized Fiducial Inference" by Jan Hannig [link]

More resources: - BFF, Bayesian, Fiducial \& Frequentist: http://bff-stat.org/about/

