# Solution 4: Statistical inference (I) 

Siyue Yang<br>05/10/2022

## Part 1: Probability distributions

1. A contestant on a game show needs to answer 10 questions correctly to win the jackpot. However, if they get 4 incorrect answers, they are kicked off the show. Suppose one contestant consistently has a $80 \%$ chance of correctly responding to any question.
(a) What is the probability distribution?
(b) What is the probability that she will correctly answer 10 questions before 4 incorrect responses?
(c) Write out the R code to calculate (b).
2. A small town's police department issues 5 speeding tickets per month on average.
(a) Using a Poisson random variable, what is the likelihood that the police department issues 3 or fewer tickets in one month?
(b) What is the probability that 10 days or fewer elapse between two tickets being issued?
(c) Write out the R code to calculate (a), (b).

## Solution

1. Negative Binomial distribution.

Letting $Y$ represent the number of incorrect responses, and setting $r=10$, we want

$$
\begin{aligned}
P(Y<4)= & P(Y=0)+P(Y=1)+P(Y=2)+P(Y=3) \\
= & \binom{9}{9}(1-0.8)^{0}(0.8)^{10}+\binom{10}{9}(1-0.8)^{1}(0.8)^{10} \\
& +\binom{11}{9}(1-0.8)^{2}(0.8)^{10}+\binom{12}{9}(1-0.8)^{3}(0.8)^{10} \\
= & 0.97
\end{aligned}
$$

sum(dnbinom(0:3, size $=10$, prob $=.8)$ )
\#\# [1] 0.7473243
2. First, we note that here $P(Y \leq 3)=P(Y=0)+P(Y=1)+\cdots+P(Y=3)$. Applying the probability mass function for a Poisson distribution with $\lambda=5$, we find that

$$
\begin{aligned}
P(Y \leq 3) & =P(Y=0)+P(Y=1)+P(Y=2)+P(Y=3) \\
& =\frac{e^{-5} 5^{0}}{0!}+\frac{e^{-5} 5^{1}}{1!}+\frac{e^{-5} 5^{2}}{2!}+\frac{e^{-5} 5^{3}}{3!} \\
& =0.27
\end{aligned}
$$

```
sum(dpois(0:3, lambda = 5)) # or use ppois(3, 5)
```

\#\# [1] 0.2650259

We know the town's police issue 5 tickets per month. For simplicity's sake, assume each month has 30 days. Then, the town issues $\frac{1}{6}$ tickets per day. That is $\lambda=\frac{1}{6}$, and the average wait time between tickets is $\frac{1}{1 / 6}=6$ days. Therefore,

$$
P(Y<10)=\int_{0}^{10} \frac{1}{6} e^{-\frac{1}{6} y} d y=0.81
$$

```
pexp(10, rate = 1/6)
```

\#\# [1] 0.8111244

## Part 2: Statistical inference

1. (AoS 6.6.2) Let $X_{1}, \ldots, X_{n} \sim \operatorname{Uniform}(0, \theta)$ and let $\hat{\theta}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Find the bias, se and MSE of this estimator.
2. (AoS 6.6.3) Let $X_{1}, \ldots, X_{n} \sim \operatorname{Uniform}(0, \theta)$ and let $\hat{\theta}=2 \bar{X}_{n}$. Find the bias, se and MSE of this estimator.
3. Let $X_{1}, \ldots, X_{n} \sim \operatorname{Uniform}(0,1)$. Let $Y_{n}=\bar{X}_{n}^{2}$. Find the limiting distribution of $Y_{n}$. (Hint: CLT)

## Solution

1. The CDF $G$ of $\widehat{\theta}$ is

$$
\begin{aligned}
G(\widehat{\theta}) & =\mathbb{P}(\widehat{\Theta} \leq \widehat{\theta}) \\
& =\mathbb{P}\left(\max \left\{X_{1}, \ldots, X_{n}\right\} \leq \widehat{\theta}\right) \\
& =\prod_{i=1}^{n} \mathbb{P}\left(X_{i} \leq \widehat{\theta}\right) \\
& =F_{\theta}(\widehat{\theta})^{n} \\
& =\left(\frac{\widehat{\theta}}{\theta}\right)^{n}
\end{aligned}
$$

The density is therefore

$$
g(\widehat{\theta})=\left(\frac{n}{\theta}\right)\left(\frac{\widehat{\theta}}{\theta}\right)^{n-1}
$$

Thus,

$$
\mathbb{E}_{\theta}(\widehat{\theta})=\int_{0}^{\theta} \widehat{\theta} g(\widehat{\theta}) d \widehat{\theta}=\frac{n \theta}{n+1}
$$

and

$$
\text { bias }=\frac{n \theta}{n+1}-\theta=-\frac{\theta}{n+1}
$$

Also,

$$
\mathbb{E}_{\theta}\left(\widehat{\theta}^{2}\right)=\int_{0}^{\theta} \widehat{\theta}^{2} g(\widehat{\theta}) d \widehat{\theta}=\frac{n \theta^{2}}{n+2}
$$

and so

$$
\mathbb{V}_{\theta}(\widehat{\theta})=\frac{n \theta^{2}}{n+2}-\left(\frac{n \theta}{n+1}\right)^{2}=\frac{n \theta^{2}}{(n+2)(n+1)^{2}}
$$

The mse is

$$
\operatorname{bias}^{2}+\mathbb{V}=\left(\frac{\theta}{n+1}\right)^{2}+\frac{n \theta^{2}}{(n+2)(n+1)^{2}}=\frac{2 \theta^{2}}{(n+1)(n+2)}
$$

2. Recall that $\mathbb{E}\left(X_{i}\right)=\theta / 2, \mathbb{V}\left(X_{i}\right)=\theta^{2} / 12$. So

$$
\mathbb{E}_{\theta}(2 \bar{X})=2 \mathbb{E}_{\theta}(\bar{X})=2 \frac{\theta}{2}=\theta
$$

and hence bias $=0$. Now

$$
\mathbb{V}_{\theta}(2 \bar{X})=4 \mathbb{V}_{\theta}(\bar{X})=\frac{4 \sigma^{2}}{n}=\frac{4 \theta^{2}}{12 n}=\frac{\theta^{2}}{3 n}
$$

Since this estimator is unbiased,

$$
\mathrm{mse}=\mathbb{V}_{\theta}(\widehat{\theta})=\frac{\theta^{2}}{3 n}
$$

3. $\mu=\mathbb{E}\left(X_{i}\right)=1 / 2$ and $\sigma^{2}=\mathbb{V}\left(X_{i}\right)=1 / 12$. By the CLT,

$$
\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}=\sqrt{12 n}\left(\bar{X}-\frac{1}{2}\right) \rightsquigarrow N(0,1) .
$$

Now $Y=g(\bar{X})$ where $g(s)=s^{2}$. And $g^{\prime}(s)=2 s$ and $g^{\prime}(\mu)=g^{\prime}(1 / 2)=2(1 / 2)=1$. From the delta method,

$$
\frac{\sqrt{n}(Y-g(\mu))}{\left|g^{\prime}(\mu)\right| \sigma}=\sqrt{12 n}\left(\bar{X}-\frac{1}{4}\right) \rightsquigarrow N(0,1)
$$

