Exercise 1: Basic programming in R

Yuan Tian

07/10/2023

Part 1: Matrix and vector operations.

1. Solve the following system:

$$
\left[\begin{array}{ccccc}
a_{1} & b_{1} & & & 0 \\
c_{1} & a_{2} & b_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & & a_{99} & b_{99} \\
0 & & & c_{99} & a_{100}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{100}
\end{array}\right]=\left[\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{100}
\end{array}\right]
$$

where

$$
a_{j}=j, \quad b_{j}=1 / j, \quad c_{j}=1, \quad d_{j}=\sin (j \pi / 200)
$$

and print $x_{1}, x_{2}, \ldots, x_{5}$.

Part 2: For loops.

1. Write a function that uses a for loop to calculate the following with a sequence of m, and generate a plot for m verses E_{m}. Avoid using a for loop, can you complete the same task?

$$
E_{m}=1+\frac{1}{2}+\cdots+\frac{1}{2^{m}}-\log \left(2^{m}\right)
$$

2. Let's draw a regular polygon of n sides, with a horizontal bottom side, and the corners of the polygon staying on the unit circle. For given $n=5$ and $r=0.6$, start the first point $p_{1}=\left(x_{1}, y_{1}\right)$ as a random number in $(-0.5,0.5) \times(-0.5,0.5)$, generate 10^{4} points interactively. In the j th iteration, we choose one corner z_{*} of the polygon randomly and let $p_{j+1}=\left(x_{j+1}, y_{j+1}\right)$ be the point on the line segment between p_{j} and z_{*}, with the distance from p_{j+1} to p_{j} being r times the distance from z_{j} to p_{j} and then draw all these points as dots in the $x y$ panel.

Hint: Complex numbers can be used to represent points in the $x y$ plane. The following script works for even or odd n, and the polygon always has a flat bottom.

```
n <- 8
t <- c(0:n) - 0.5
z <- exp(2i * pi * (t/n - 0.25))
plot(Re(z), Im(z))
```


