Module 7: Linear regression

Yuan Tian

07/20/2023

Linear regression in R

```
library(tidyverse) #ggplot2, dplyr, etc.
library(reshape2) #need this for melt()
library(knitr) #need this for kable
library(MASS) #contains dataset
```

Load the birthwt data. This data contains 189 observations, 9 predictors, and an outcome, birthweight, available both as a continuous measure and a binary indicator for low birth weight.

data(birthwt)
head(birthwt)

##		low	age	lwt	race	$\verb+smoke+$	ptl	ht	ui	ftv	bwt
##	85	0	19	182	2	0	0	0	1	0	2523
##	86	0	33	155	3	0	0	0	0	3	2551
##	87	0	20	105	1	1	0	0	0	1	2557
##	88	0	21	108	1	1	0	0	1	2	2594
##	89	0	18	107	1	1	0	0	1	0	2600
##	91	0	21	124	3	0	0	0	0	0	2622

- 1. Plot a scatterplot of birthweight (bwt) and mother's weight (lwt).
- 2. Use OLS to fit the regression of birthweight on mother's weight.
- 3. Extract the following: estimated coefficients, standard errors, variance-covariance matrix, and confidence intervals.
- 4. Plot the regression line and interpret the intercept and slope
- 5. Does the interpretation of the intercept make sense? How might we change this?
- 6. Now, we want to fit a model that includes race, mother's age, and smoking status in the model. Race takes on value 1 for white, 2 for black, and 3 for other. Mother's age is continuous. Smoking status is binary. Write out the regression function we may be interested in.
- 7. Use OLS to calculate the coefficient estimates in this model.
- 8. Interpret all the coefficient estimates.
- 9. Print the results in Rmarkdown using kable().