Module 4: Statistical inference (I)

Jianhui Gao

July 13, 2023

Outline

This module we will review

- Basics of probability
- Fundamental concepts in inference

Probability distributions

- In statistics, we try to draw conclusions about a larger population from a sample of observations.
- We use mathematical models to capture probabilistic behavior of a population.
- This behavior is modeled using probability distributions.

Density/Distribution functions

Definition (Cumulative Distribution Function)

$$
F_{X}(x)=P(X \leq x) \quad \forall x \in \mathbb{R}
$$

Density/Distribution functions (cont'd)

Definition (Probability Mass Function)

For a discrete $R V$, the probability mass function (PMF) is:

$$
f_{X}(x)=P(X=x) \quad \forall x \in \mathbb{R}
$$

Definition (Probability Density Function)

For a continuous RV, the probability density function (PDF) is:

$$
f_{X}(x)=\left.\frac{\partial}{\partial t} F(t)\right|_{t=x}
$$

So $F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t \forall x \in \mathbb{R}$.

Note that $f_{X} \geq 0$ for $\forall x$, and thus F_{X} is an increasing function.

Expectation and Variance

Definition (Expectation)

A measure of central tendancy (a weighted average of the values of X)

$$
\begin{aligned}
& E[X]=\sum_{x \in S} x P(X=x) \text { for discrete } \mathrm{RV} \text { taking values from } S \\
& E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x \text { for continuous } \mathrm{RV}
\end{aligned}
$$

Definition (Variance)

A measure of the spread of a distribution

$$
\begin{aligned}
& \operatorname{Var}(X)=\sum_{x \in S}(x-E[X])^{2} P(X=x) \text { for discrete RV } \\
& \operatorname{Var}(X)=\int_{-\infty}^{\infty}(x-E[X])^{2} f_{X}(x) d x \text { for continuous RV }
\end{aligned}
$$

Discreate random variable

A discrete random variable has a countable number of possible values.

Bernoulli and Binomial random variable

- Consider the event of flipping a (possibly unfair) coin.
- $Y \in\{0,1\}$ represents success and failure.
- Suppose we only flip the coin once,
- We can express $P(Y=1)=p$ and $P(Y=0)=1-p$
- Bernoulli distribution

$$
P(Y=y)=p^{y}(1-p)^{1-y} \quad \text { for } \quad y=0,1
$$

- If we flip the coin n times,
- Binomial distribution

$$
P(Y=y)=\binom{n}{y} p^{y}(1-p)^{n-y} \quad \text { for } \quad y=0,1, \ldots, n
$$

Binomial distributions with different values of n and p

If $Y \sim \operatorname{Binomial}(n, p)$, then $\mathrm{E}(Y)=n p$ and $\mathrm{SD}(Y)=\sqrt{n p(1-p)}$.

Figure 1: Binomial distributions with different values of n and p.

How to generate in R ?

All common distributions have four functions in R :

- Density
dbinom(x, size, prob)
- Distribution function
pbinom(q, size, prob)
- Quantile function
qbinom(p, size, prob)
- Random generaation
rbinom(n, size, prob)
Not sure? Using ? with any of the four functions, e.g. ?qbinom

Example of binomial distribution computing

Question: While taking a multiple choice test, a student encountered 10 problems where she ended up completely guessing, randomly selecting one of the four options. What is the chance that she got exactly 2 of the 10 correct?

Example of binomial distribution computing

Question: While taking a multiple choice test, a student encountered 10 problems where she ended up completely guessing, randomly selecting one of the four options. What is the chance that she got exactly 2 of the 10 correct?

Answer: Knowing that the student randomly selected her answers, we assume she has a 25% chance of a correct response.

$$
P(Y=2)=\binom{10}{2}(.25)^{2}(.75)^{8}=0.282
$$

Example of binomial distribution computing

Question: While taking a multiple choice test, a student encountered 10 problems where she ended up completely guessing, randomly selecting one of the four options. What is the chance that she got exactly 2 of the 10 correct?

Answer: Knowing that the student randomly selected her answers, we assume she has a 25% chance of a correct response.

$$
P(Y=2)=\binom{10}{2}(.25)^{2}(.75)^{8}=0.282
$$

\mathbf{R} computing:

dbinom(2, size $=10$, prob $=.25$)
\#\# [1] 0.2815676

Continuous random variable

A continuous random variable can take on an uncountably infinite number of values. Given a pdf $f(y)$,

$$
P(a \leq Y \leq b)=\int_{a}^{b} f(y) d y
$$

Properties:

- $\int_{-\infty}^{\infty} f(y) d y=1$.
- For any value $y, P(Y=y)=\int_{y}^{y} f(y) d y=0 . P(y<Y)=P(y \leq Y)$.

Example of Continuous Distribution (Normal)

- The normal distribution is a very important distribution because:
- A lot of things look normal
- Analytically tractable
- Central limit theorem
- $\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)$
- Characterized by mean, μ, and variance, σ^{2}.

How to Generate Samples from Normal Distribution

The following commands are for a normal random variable with mean μ and variance σ^{2}, that is, $X \sim N\left(\mu, \sigma^{2}\right)$,

- To calculate the probability density function at a value \times, dnorm($x, m u$, sigma)
- To calculate the cumulative distribution function at a value x, pnorm(x,mu,sigma)
- To generate a size m sample from the normal distribution, rnorm(m,mu,sigma)
- Note that the third argument is the square root of the variance, this is because the R function for normal distribution asks for the standard deviation, which is defined as the square root of the variance

Some probability distributions in R

Continuous

- Normal (?rnorm)
- Uniform (?runif)
- Beta (?rbeta)
- Chi-sq (?rchisq)
- Exponential (?rexp)
- t (rt)
- F (?rf)
- Logistic (?rlogis)
- Lognormal (?rlnorm)

Discrete

- Poisson (?rpois)
- Binomial (?rbinom)
- Geometric (?rgeom)
- Negative Binomial (?rnbinom)
- Multinomial (?rmultinom)

Empirical vs. Theoretical CDF

In statistics, an empirical distribution function is the distribution function associated with the empirical measure of a sample.

- Theoretical CDF

$$
F_{X}(k)=\operatorname{Pr}(X \leq k)
$$

- Empirical CDF

$$
\hat{F}_{n}(k)=\frac{\text { number of elements in the sample } \leq k}{n}=\frac{1}{n} \sum_{i=1}^{n} I_{X_{i} \leq k}
$$

where X_{1}, \ldots, X_{n} make up some random sample from the underlying distribution.

Probability and inference

Probability and inference

Inference and Data Mining

- Probability: Given a data generating process, what are the properties of the outcomes?
- Statistical inference: Given the outcomes, what can we say about the process that generated the data?

Parametric vs. Nonparametric models

- Statistical model \mathfrak{F} : a set of distributions (or densities or regression functions)

Parametric vs. Nonparametric models

- Statistical model \mathfrak{F} : a set of distributions (or densities or regression functions)
- Parametric model: a set \mathfrak{F} that can be parameterized by a finite number of parameters

$$
\mathfrak{F}=\{f(x ; \theta): \theta \in \Theta\}
$$

where θ is an unknown parameter (or vector of parameters) that can take values in the parameter space Θ.

- e.g. Normal distribution, a 2-parameter model with density as $f(x ; \mu, \sigma)$

Parametric vs. Nonparametric models

- Statistical model \mathfrak{F} : a set of distributions (or densities or regression functions)
- Parametric model: a set \mathfrak{F} that can be parameterized by a finite number of parameters

$$
\mathfrak{F}=\{f(x ; \theta): \theta \in \Theta\}
$$

where θ is an unknown parameter (or vector of parameters) that can take values in the parameter space Θ.

- e.g. Normal distribution, a 2-parameter model with density as $f(x ; \mu, \sigma)$
- Nonparametric model: a set \mathfrak{F} that cannot be parameterized by a finite number of parameters
- e.g. $\mathfrak{F}_{\mathrm{ALL}}=\left\{\right.$ all $\left.\mathrm{CDF}^{\prime} s\right\}$ is nonparametric.

Frequentist and Bayesian

- Frequentist: statistical methods with guaranteed frequency behavior
- Bayesian: statistical methods for using data to update beliefs

Point estimation

- Providing a single "best guess" of some quantity of interest
- Notations
- Parameter θ : fixed, unknown quantity
- Point estimator $\hat{\theta}$: depends on data, random variable

Point estimation

- Providing a single "best guess" of some quantity of interest
- Notations
- Parameter θ : fixed, unknown quantity
- Point estimator $\hat{\theta}$: depends on data, random variable

Definition (Point estimator)

Let X_{1}, \ldots, X_{n} be n IID data points from some distribution F. A point estimator $\hat{\theta}_{n}$ of a parameter θ is some function of X_{1}, \ldots, X_{n} :

$$
\widehat{\theta}_{n}=g\left(X_{1}, \ldots, X_{n}\right)
$$

- What is a good point estimate?

MSE

- Definition:

$$
\mathrm{MSE}=\mathbb{E}_{\theta}\left(\hat{\theta}_{n}-\theta\right)^{2}
$$

- No uniformly best estimator in terms of MSE
- It is NOT possible to have an estimator that is uniformly the best.

Bias and Variance

- Bias

$$
\operatorname{bias}\left(\widehat{\theta}_{n}\right)=\mathbb{E}_{\theta}\left(\hat{\theta}_{n}\right)-\theta
$$

- Variance

$$
\operatorname{Var}\left(\widehat{\theta}_{n}\right)=\mathbb{E}_{\theta}\left(\hat{\theta}_{n}-\mathbb{E} \theta\right)^{2}
$$

- Theorem

$$
M S E=b i a s^{2}+V a r
$$

Unbiasedness

- Definition

$$
\operatorname{bias}\left(\hat{\theta}_{n}\right)=\mathbb{E}_{\theta}\left(\hat{\theta}_{n}\right)-\theta=0
$$

- Unbiasedness is a small sample (finite sample) property
- An unbiased estimator may not exist
- An unbiased estimator is not necessarily a good estimator

Consistency

- Definition

$$
\widehat{\theta}_{n} \xrightarrow{\mathrm{P}} \theta
$$

- It is possible to be unbiased but not consistent.
- It is possible to be consistent but not unbiased.

Asypototic unbiasedness

- Definition

$$
\operatorname{bias}\left(\hat{\theta}_{n}\right)=\mathbb{E}_{\theta}\left(\hat{\theta}_{n}\right)-\theta \rightarrow 0, \text { as } n \rightarrow \infty
$$

- It is possible to be asypototically unbiased but not consistent.
- It is possible to be consistent but NOT asymptotically unbiased.
- Sufficient conditions: MSE $\rightarrow 0$.

Resources

This tutorial is based on

- Havard Biostatistics Summer Pre Course [link]
- "Beyond Multiple Linear Regression" by Paul Roback and Julie Legler [link]

