Exercise 1: Basic programming in R

Yaqi Shi

07/09/2024

Part 1: Matrix and vector operations.

1. Solve the following system:

a_1	b_1			0		1	
c_1	a_2	b_2			$\begin{array}{c c} x_1 \\ x_2 \end{array}$		$\begin{array}{c} a_1 \\ d_2 \end{array}$
	۰.	۰.	۰.		$ $ x_2	=	u_2
	•	•	•	b			
0			u_{99}	099	x_{100}		d_{100}
0			c_{99}	u_{100} _]	-	

where

$$a_j = j$$
, $b_j = 1/j$, $c_j = 1$, $d_j = \sin(j\pi/200)$

and print $x_1, x_2, ..., x_5$.

Part 2: For loops.

1. Write a function that uses a for loop to calculate the following with a sequence of m, and generate a plot for m verses E_m . Avoid using a for loop, can you complete the same task?

$$E_m = 1 + \frac{1}{2} + \dots + \frac{1}{2^m} - \log(2^m)$$

2. Let's draw a regular polygon of n sides, with a horizontal bottom side, and the corners of the polygon staying on the unit circle. For given n = 5 and r = 0.6, start the first point $p_1 = (x_1, y_1)$ as a random number in $(-0.5, 0.5) \times (-0.5, 0.5)$, generate 10^4 points interactively. In the *j*th iteration, we choose one corner z_* of the polygon randomly and let $p_{j+1} = (x_{j+1}, y_{j+1})$ be the point on the line segment between p_j and z_* , with the distance from p_{j+1} to p_j being *r* times the distance from z_j to p_j and then draw all these points as dots in the xy panel.

Hint: Complex numbers can be used to represent points in the xy plane. The following script works for even or odd n, and the polygon always has a flat bottom.

n <- 8
t <- c(0:n) - 0.5
z <- exp(2i * pi * (t/n - 0.25))
plot(Re(z), Im(z))</pre>

