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Outline

This module we will review

Basics of probability
Fundamental concepts in inference
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Probability distributions

In statistics, we try to draw conclusions about a larger population
from a sample of observations.
We use mathematical models to capture probabilistic behavior of a
population.
This behavior is modeled using probability distributions.
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Density/Distribution functions

Definition (Cumulative Distribution Function)

FX (x) = P(X ≤ x) ∀x ∈ R
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Density/Distribution functions (cont’d)

Definition (Probability Mass Function)
For a discrete RV , the probability mass function (PMF) is:

fX (x) = P(X = x) ∀x ∈ R

Definition (Probability Density Function)
For a continuous RV, the probability density function (PDF) is:

fX (x) = ∂

∂t F (t)
∣∣∣∣
t=x

So FX (x) =
∫ x

−∞ fX (t)dt∀x ∈ R.

Note that fX ≥ 0 for ∀x , and thus FX is an increasing function.
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Expectation and Variance
Definition (Expectation)
A measure of central tendancy (a weighted average of the values of X )

E [X ] =
∑
x∈S

xP(X = x) for discrete RV taking values from S

E [X ] =
∫ ∞

−∞
xfX (x)dx for continuous RV

Definition (Variance)
A measure of the spread of a distribution

Var(X ) =
∑
x∈S

(x − E [X ])2P(X = x) for discrete RV

Var(X ) =
∫ ∞

−∞
(x − E [X ])2fX (x)dx for continuous RV
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Discreate random variable

A discrete random variable has a countable number of possible values.
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Bernoulli and Binomial random variable

Consider the event of flipping a (possibly unfair) coin.
Y ∈ {0, 1} represents success and failure.
Suppose we only flip the coin once,

We can express P(Y = 1) = p and P(Y = 0) = 1 − p
Bernoulli distribution

P(Y = y) = py (1 − p)1−y for y = 0, 1

If we flip the coin n times,
Binomial distribution

P(Y = y) =
(

n
y

)
py (1 − p)n−y for y = 0, 1, . . . , n
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Binomial distributions with different values of n and p
If Y ∼ Binomial(n, p), then E(Y ) = np and SD(Y ) =

√
np(1 − p).
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Figure 1: Binomial distributions with different values of n and p.
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How to generate in R?

All common distributions have four functions in R:

Density
dbinom(x, size, prob)

Distribution function
pbinom(q, size, prob)

Quantile function
qbinom(p, size, prob)

Random generaation
rbinom(n, size, prob)

Not sure? Using ? with any of the four functions, e.g. ?qbinom
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Example of binomial distribution computing
Question: While taking a multiple choice test, a student encountered 10
problems where she ended up completely guessing, randomly selecting one
of the four options. What is the chance that she got exactly 2 of the 10
correct?

Answer: Knowing that the student randomly selected her answers, we
assume she has a 25% chance of a correct response.

P(Y = 2) =
(

10
2

)
(.25)2(.75)8 = 0.282

R computing:

dbinom(2, size = 10, prob = .25)

## [1] 0.2815676
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Continuous random variable

A continuous random variable can take on an uncountably infinite number
of values. Given a pdf f (y),

P(a ≤ Y ≤ b) =
∫ b

a
f (y)dy

Properties:∫∞
−∞ f (y)dy = 1.

For any value y , P(Y = y) =
∫ y

y f (y)dy = 0.
P(y < Y ) = P(y ≤ Y ).
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Example of Continuous Distribution (Normal)
The normal distribution is a very important distribution because:

A lot of things look normal
Analytically tractable
Central limit theorem
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How to Generate Samples from Normal Distribution

The following commands are for a normal random variable with mean µ
and variance σ2, that is, X ∼ N(µ, σ2),

To calculate the probability density function at a value x,
dnorm(x,mu,sigma)

To calculate the cumulative distribution function at a value x,
pnorm(x,mu,sigma)

To generate a size m sample from the normal distribution,
rnorm(m,mu,sigma)

Note that the third argument is the square root of the variance,
this is because the R function for normal distribution asks for the
standard deviation, which is defined as the square root of the variance
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Some probability distributions in R
Continuous

Normal (?rnorm)
Uniform (?runif)
Beta (?rbeta)
Chi-sq (?rchisq)
Exponential (?rexp)
t (rt)
F (?rf)
Logistic (?rlogis)
Lognormal (?rlnorm)

Discrete

Poisson (?rpois)
Binomial (?rbinom)
Geometric (?rgeom)
Negative Binomial (?rnbinom)
Multinomial (?rmultinom)
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Empirical vs. Theoretical CDF

In statistics, an empirical distribution function is the distribution function
associated with the empirical measure of a sample.

Theoretical CDF
FX (k) = Pr(X ≤ k)

Empirical CDF

F̂n(k) = number of elements in the sample ≤ k
n = 1

n

n∑
i=1

IXi ≤k

where X1, . . . , Xn make up some random sample from the underlying
distribution.
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Probability and inference

Probability: Given a data generating process, what are the properties
of the outcomes?
Statistical inference: Given the outcomes, what can we say about the
process that generated the data?
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Parametric vs. Nonparametric models

Statistical model F: a set of distributions (or densities or regression
functions)

Parametric model: a set F that can be parameterized by a finite
number of parameters

F = {f (x ; θ) : θ ∈ Θ}

where θ is an unknown parameter (or vector of parameters) that can
take values in the parameter space Θ.

e.g. Normal distribution, a 2-parameter model with density as f (x ; µ, σ)

Nonparametric model: a set F that cannot be parameterized by a
finite number of parameters

e.g. FALL = { all CDF′s
}

is nonparametric.
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Frequentist and Bayesian

Frequentist: statistical methods with guaranteed frequency behavior
Bayesian: statistical methods for using data to update beliefs
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Point estimation

Providing a single “best guess” of some quantity of interest
Notations

Parameter θ: fixed, unknown quantity
Point estimator θ̂: depends on data, random variable

Definition (Point estimator)
Let X1, . . . , Xn be n IID data points from some distribution F . A point
estimator θ̂n of a parameter θ is some function of X1, . . . , Xn :

θ̂n = g (X1, . . . , Xn)

What is a good point estimate?
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MSE

Definition:
MSE = Eθ

(
θ̂n − θ

)2

No uniformly best estimator in terms of MSE
It is NOT possible to have an estimator that is uniformly the best.
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Bias and Variance

Bias
bias

(
θ̂n
)

= Eθ

(
θ̂n
)

− θ

Variance
Var

(
θ̂n
)

= Eθ

(
θ̂n − Eθ

)2

Theorem

MSE = bias2 + Var
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Unbiasedness

Definition
bias

(
θ̂n
)

= Eθ

(
θ̂n
)

− θ = 0

Unbiasedness is a small sample (finite sample) property
An unbiased estimator may not exist
An unbiased estimator is not necessarily a good estimator
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Consistency

Definition
θ̂n

P−→ θ

It is possible to be unbiased but not consistent.
It is possible to be consistent but not unbiased.
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Asypototic unbiasedness

Definition

bias
(
θ̂n
)

= Eθ

(
θ̂n
)

− θ → 0, as n → ∞

It is possible to be asypototically unbiased but not consistent.
It is possible to be consistent but NOT asymptotically unbiased.
Sufficient conditions: MSE → 0.
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Resources

This tutorial is based on

Havard Biostatistics Summer Pre Course [link]
“Beyond Multiple Linear Regression” by Paul Roback and Julie Legler
[link]
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https://isabelfulcher.github.io/methodsprep/
https://bookdown.org/roback/bookdown-BeyondMLR/

