Module 7: Linear regression

Yaqi Shi

July 22, 2024

Outline

In this module, we will review linear regression.

Linear regression

Model:

$$
Y_{n\times 1}=X_{n\times p}\beta_{p\times 1}+\epsilon_{n\times 1}
$$

• Equivalently:

$$
y_i = x_i^{\mathrm{T}} \beta + \epsilon_i, \quad i = 1, \ldots, n
$$

Linear regression

Model:

$$
Y_{n\times 1}=X_{n\times p}\beta_{p\times 1}+\epsilon_{n\times 1}
$$

• Equivalently:

$$
y_i = x_i^{\mathrm{T}} \beta + \epsilon_i, \quad i = 1, \ldots, n
$$

- Standard assumptions
	- y_i independent (equivalently ϵ_i independent)
	- $\mathbf{E}(\epsilon_i) = 0$
	- $\mathsf{var}\left(\epsilon_{i}\right)=\sigma^{2}$, constant
	- \bullet x_i known, β to be estimated

Linear regression

Model:

$$
Y_{n\times 1}=X_{n\times p}\beta_{p\times 1}+\epsilon_{n\times 1}
$$

• Equivalently:

$$
y_i = x_i^{\mathrm{T}} \beta + \epsilon_i, \quad i = 1, \ldots, n
$$

- Standard assumptions
	- y_i independent (equivalently ϵ_i independent)
	- $\mathbf{E}(\epsilon_i) = 0$
	- $\mathsf{var}\left(\epsilon_{i}\right)=\sigma^{2}$, constant
	- \bullet x_i known, β to be estimated
- More concisely:

$$
\mathbb{E}(Y | X) = X\beta, \quad \text{var}(Y | X) = \sigma^2 I
$$

Interpretation of *β*^j

Effect on the expected response of a unit change in jth explanatory variable, all other variables held fixed

Least squares estimation

• Definition (minimize the residuals)

$$
\hat{\beta}_{\mathrm{LS}} := \min_{\beta} \sum_{i=1}^{n} \left(y_i - x_i^{\mathrm{T}} \beta \right)^2
$$

• Equivalently,

$$
\hat{\beta}_{LS} := \min_{\beta} (y - X\beta)^{\mathrm{T}} (y - X\beta)
$$

Equivalently (L2 distance),

$$
\hat{\beta}_{\mathrm{LS}} := \min_{\beta} \| \mathrm{y} - X\beta \|_2^2
$$

• Equivalently, $\hat{\beta}$ is the solution of the score equation

$$
X^{\mathrm{T}}(y - X\beta) = 0
$$

• Solution

$$
\hat{\beta}_{\mathrm{LS}}=\left(X^{\mathrm{T}}X\right)^{-1}\left(X^{\mathrm{T}}\boldsymbol{y}\right)
$$

Another interpretation: the projection of Y onto the linear subspace spanned by the columns of **X**

FIGURE 3.2. The N-dimensional geometry of least squares regression with two predictors. The outcome vector y is orthogonally projected onto the hyperplane spanned by the input vectors x_1 and x_2 . The projection \hat{y} represents the vector of the least squares predictions

Elements of Statistical Learning, p46 Yaqi Shi [Module 7: Linear regression](#page-0-0) July 22, 2024 6 / 22

Least squares estimation (cont'd)

Assume X is fixed,

• Expected value

$$
\mathbb{E}\left(\hat{\beta}_{\text{LS}}\right) = \left(X^{\text{T}}X\right)^{-1}X^{\text{T}}\mathbb{E}(\mathsf{y}) = \left(X^{\text{T}}X\right)^{-1}\left(X^{\text{T}}X\right)\beta = \beta
$$

• Variance

$$
\text{var} \left(\hat{\beta}_{LS} \right) = \left(X^{\text{T}} X \right)^{-1} X^{\text{T}} \text{var}(y) X \left(X^{\text{T}} X \right)^{-1}
$$

$$
= \left(X^{\text{T}} X \right)^{-1} X^{\text{T}} \sigma^{2} I X \left(X^{\text{T}} X \right)^{-1}
$$

$$
= \sigma^{2} \left(X^{\text{T}} X \right)^{-1}
$$

Assumptions for ordinary least squares

- **Linearity**: the expectation of Y is linear in $X_1 \ldots X_p$
- **Independence**: the *ϵ*ⁱ are independent
- **Mean zero errors**: the ϵ_i have mean zero, i.e. $E\left[\epsilon_i\right]=0$
- **Equal variance (homoscedasticity)**: the *ϵ*ⁱ have the same variance, i.e. $\mathsf{Var}\left[\epsilon_i\right] = \sigma^2$

What about normal distribution?

- If we further assume $\epsilon_i \sim \mathcal{N}\left(0, \sigma^2 \right)$ (and independent across *i*), then
- $\mathsf{y} \mid \mathsf{X} \sim \mathsf{N}\left(\mathsf{X}\beta, \sigma^2 \mathsf{I} \right)$, and
- **•** likelihood function is

$$
L(\beta, \sigma^2; y) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp \left\{-\frac{1}{2\sigma^2}(y - X\beta)^T(y - X\beta)\right\}
$$

• log-likelihood function is

$$
\ell\left(\beta,\sigma^2;y\right)=-\frac{n}{2}\log\left(\sigma^2\right)-\frac{1}{2\sigma^2}(y-X\beta)^{\mathrm{T}}(y-X\beta)
$$

maximum likelihood estimate of *β* is

$$
\hat{\beta}_{ML} = \left(X^{\mathrm{T}}X\right)^{-1}X^{\mathrm{T}}\mathbf{y} = \hat{\beta}_{\mathrm{LS}}
$$

What about normal distribution? (cont'd)

• distribution of $\hat{\beta}$ is normal

$$
\hat{\beta} \sim N_P \left(\beta, \sigma^2 \left(X^{\mathrm{T}} X \right)^{-1} \right)
$$

distribution of $\hat{\beta}_j$ is

$$
N\left(\beta_j,\sigma^2\left(X^{\mathrm{T}}X\right)_{jj}^{-1}\right),\quad j=1,\ldots,p
$$

maximum likelihood estimate of σ^2 is

$$
\frac{1}{n}(y - X\hat{\beta})^{\mathrm{T}}(y - X\hat{\beta})
$$

• but we use

$$
\tilde{\sigma}^2 = \frac{1}{n-p} (y - X\hat{\beta})^{\mathrm{T}} (y - X\hat{\beta})
$$

Maximum likelihood estiamtion vs. OLS

We did not place any distributional assumptions on the outcome,

- We only required that $E\left[\epsilon_{i}\right] =0$ with constant variance
- In other words, OLS is a semiparametric method

Maximum likelihood estiamtion vs. OLS

We did not place any distributional assumptions on the outcome,

- We only required that $E\left[\epsilon_{i}\right] =0$ with constant variance
- In other words, OLS is a semiparametric method

Sometimes, people assume that $\epsilon_i \sim \mathcal{N}\left(0, \sigma^2 \right)$, which means

$$
Y_i \sim N\left(\beta_0 + \beta_1 X_{i1} + \ldots + \beta_1 X_{ip}, \sigma^2\right)
$$

- If this additional assumption is made, then we can instead use maximum likelihood estimation for *β*
- This connects to a whole other class of models called generalized linear models (GLMs)
- Interestingly, in this case, you will end up with the same estimates for *β*

lm function in R

Description

lm is used to fit linear models. It can be used to carry out regression, single stratum analysis of variance and analysis of covariance

```
Usage
lm(formula, data, subset, weights, na.action, method
= "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset, ...)
```
Check out utility functions: summary, residuals, fitted, deviance, coef, ...

Example

catF <- **lm**(y**~**x) **summary**(catF)

```
##
## Call:
## lm(formula = y ~ x)##
## Residuals:
## Min 1Q Median 3Q Max
## -3.00871 -0.68599 -0.04506 0.79583 2.21858
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.9813 1.4855 2.007 0.050785 .
                         0.6254 4.215 0.000119 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.162 on 45 degrees of freedom
## Multiple R-squared: 0.2831, Adjusted R-squared: 0.2671
## F-statistic: 17.77 on 1 and 45 DF, p-value: 0.0001186
```
Decomposition of sum of squares

- Total sum of squares (SS_{total}) : $\| \bm y \bar{y} \bm 1 \|^2 = \sum\limits_{i=1}^n \left(y_i \bar{y} \right)^2$
- Explained sum of squares (SS_{model}) : $\|\hat{\bm{y}} \bar{y}\bm{1}\|^2 = \sum_{i=1}^n \left(\hat{y}_i \bar{y}\right)^2$
- Residual sum of squares, *RSS* (also denoted as *SS_{error}*): ∥**y** $\hat{\textbf{y}}\Vert^2$
- The above equation decomposes SS_{total} into two parts: explained due to the LM and unexplained:

$$
\mathit{SS}_{total} \ = \mathit{SS}_{model} \ + \mathit{SS}_{error}
$$

ANOVA table

anova(catF)

Analysis of Variance Table ## ## Response: y ## Df Sum Sq Mean Sq F value Pr(>F)
x 1 24 002 24 0020 17 768 0 0001186 1 24.002 24.0020 17.768 0.0001186 *** ## Residuals 45 60.788 1.3508 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Goodness-of-fit

- It is useful to know how well a LM fits the data. One obvious measure of of goodness-of-fit is the RSS.
- A measure of goodness-of-fit is the coefficient of determination, or R^2 :

$$
\mathcal{R}^2 = \frac{\mathit{SS}_{model}}{\mathit{SS}_{total}} = 1 - \frac{\mathit{SS}_{error}}{\mathit{SS}_{total}}
$$

It gives the proportion of the variation in the response explained by the LM

 \mathcal{R}^2 is the square of the multiple correlation coefficient which is defined as the sample correlation coefficient between **y** and \hat{y}

Adjusted R^2

Adjusted R^2 is a modification of R^2 that adjusts for the number of independent variables in a model:

$$
\bar{R}^2 = 1 - \frac{SS_{\text{error}}/(n-p)}{SS_{\text{total}}/(n-1)}
$$

- When a variable is added to the model, R^2 always increases while \bar{R}^2 can increase or decrease
- Unlike R^2 , \bar{R}^2 increases only if the new term improves the model more than would be expected by chance. \bar{R}^2 can be negative, and will always be less than or equal to \mathcal{R}^2
- \bar{R}^2 does not have the same interpretation as R^2 . As such, care must be taken in interpreting and reporting this statistic
- \bar{R}^2 is useful in the variable selection stage of model building. R^2 is not useful for variable selection

Diagnostics: Under-fitting

Suppose the true model is

$$
\mathbf{y} = X\boldsymbol{\beta} + Z\boldsymbol{\gamma} + \boldsymbol{\epsilon}
$$

and we fit the model

$$
\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}
$$

That is, covariates in Z are missed. Consequences are

\n- $$
E(\hat{\beta}) = \beta + \left(X^T X \right)^{-1} X^T Z \gamma
$$
. Therefore, $\hat{\beta}$ is biased if $X^T Z \neq 0$.
\n- $\text{Var}(\hat{\beta}) = \sigma^2 \left(X^T X \right)^{-1}$, unchanged
\n- $E(\hat{\beta}^2) > \sigma^2$. That is, $\hat{\beta}^2$ is infinitely since it includes positive, but it is the following.

 $E(\hat{\sigma}^2) \geq \sigma^2$. That is, $\hat{\sigma}^2$ is inflated since it includes variation due to Z which is uncounted for by the fitted model

Lurking variables

- Lurking (confounding) variables are factors (often "hidden") may effect the relationship between the response and the covariates but are not measured or considered
- They can make it seem like there is a relationship when there's not or they can hide an existing relationship
- For example, we will observe a positive relationship between the height and reading ability among elementary school students. This may be driven by the lurking variable - age
- Some designed experiments makes Z orthogonal to X , that is, $X^{\mathcal{T}}Z=0$, then $\boldsymbol{\beta}$ is unbiased
- Randomization helps to reduce the effects of lurking variables
- Matching and/or stratification

Over-fitting

Suppose the true model is

$$
\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}
$$

and we fit the model

$$
\mathbf{y} = X\boldsymbol{\beta} + Z\boldsymbol{\gamma} + \boldsymbol{\epsilon}
$$

Consequences are

- $E(\hat{\beta}) = \beta$ and $E(\hat{\gamma}) = \gamma$ that is, both are unbiased
- $\mathsf{Var}(\hat{\boldsymbol{\beta}}) \geq \sigma^2\left(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\right)^{-1}$, that is,lose precision due to the need to estimate more parameters

•
$$
E(\hat{\sigma}^2) = \sigma^2
$$
, unchanged but with less df

Correlation and non-constant variance

So far we have assumed that $\mathsf{Var}(\boldsymbol{\epsilon}) = \sigma^2 \boldsymbol{I}$. Suppose in reality $\mathsf{Var}(\boldsymbol{\epsilon}) = \sigma^2 \, \boldsymbol{V}.$

Consequences are

\n- \n
$$
\mathcal{E}(\hat{\beta}) = \beta
$$
, unchanged\n
\n- \n $\text{Var}(\hat{\beta}) = \sigma^2 \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \left(\mathbf{X}^T \mathbf{V} \mathbf{X} \right) \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \neq \sigma^2 \left(\mathbf{X}^T \mathbf{X} \right)^{-1}$ \n
\n- \n $\mathcal{E}(\hat{\sigma}^2) \neq \sigma^2$, biased\n
\n

Correlation is a more serious violation which could severely bias inference. We need to model correlation or apply robust procedures when correlation is present

Resources

This tutorial is based on

- Linear Regression Analysis, George A.F.Seber,Alan J.Lee
- Harvard's Biostatistics Preparatory Course Methods [\[links\]](https://isabelfulcher.github.io/methodsprep/slides/Lecture_5/2018_Lecture_05.pdf).