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Outline

In this module, we will review generalized linear regression.
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Exponential family

The Gaussian, Binomial and Poisson distributions are special cases of
exponential family which assumes the following density function

f (y ; θ, ϕ) = exp
{yθ − b(θ)

a(ϕ) + c(y , ϕ)
}

θ: canonical parameter
ϕ: dispersion parameter
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Gaussian as a special case of exponential family

Assume that y ∼ N
(
µ, σ2). Then

f (y ; θ, ϕ) = 1√
2πσ2

exp
{

−(y − µ)2

2σ2

}

= exp
{

yµ − µ2/2
σ2 − 1

2

(
y2

σ2 + ln
(
2πσ2

))}

= exp
{yθ − b(θ)

a(ϕ) + c(y , ϕ)
}

θ = µ, ϕ = σ2

a(ϕ) = ϕ; (θ) = θ2/2; c(y , ϕ) = −1
2

(
y2

ϕ + ln(2πϕ)
)
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Binomial as a special case of exponential family
Assume that z ∼ B(m, π). Define the rate y = z/m. Then

f (y ; θ, ϕ) = exp
{

z ln π

1 − π
+ m ln(1 − π) + ln

(
m
z

)}

= exp
{

m
( z

m logit(π) + ln(1 − π)
)

+ ln
(

m
mz/m

)}

= exp
{yθ − b(θ)

a(ϕ) + c(y , ϕ)
}

logit(π) = ln(π/(1 − π))
θ = logit(π) → π = eθ/

(
1 + eθ

)
, ϕ = 1

a(ϕ) = 1/m, b(θ) = − ln(1 − π) = ln
(
1 + eθ

)
c(y , ϕ) = ln

(
m
my

)
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Poisson as a special case of exponential family

Assume that y ∼ P(µ). Then

f (y ; θ, ϕ) = µy exp(−µ)/y !
= exp{y ln µ − µ − ln y !}

=
{yθ − b(θ)

a(ϕ) + c(y , ϕ)
}

θ = ln µ
a(ϕ) = 1
b(θ) = eθ

c(y , ϕ) = − ln y !
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Moment generating function
Assume that

y ∼ f (y ; θ, ϕ) = exp
{yθ − b(θ)

a(ϕ) + c(y , ϕ)
}

The moment generating function of y is

M(t) ≜ exp(ty) =
∫

exp
{

ty + yθ − b(θ)
a(ϕ) + c(y , ϕ)

}
dy

=
∫

exp
{y [θ + ta(ϕ)] − b(θ)

a(ϕ) + c(y , ϕ)
}

dy

=
∫

exp
{yθ′ − b (θ′ − ta(ϕ))

a(ϕ) + c(y , ϕ)
}

dy

= exp
{b (θ′) − b (θ′ − ta(ϕ))

a(ϕ)

}∫
exp

{yθ′ − b (θ′)
a(ϕ) + c(y , ϕ)

}
dy

= exp
{b(θ + ta(ϕ)) − b(θ)

a(ϕ)

}
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Mean and variance

Since
ln M(t) = b(θ + ta(ϕ)) − b(θ)

a(ϕ)
We have

E(y) = (ln M(t))′∣∣
t=0 = b′(θ)

Var(y) = (ln M(t))′′∣∣
t=0 = a(ϕ)b′′(θ)
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Examples of means and variances

Binomial: a(ϕ) = 1/m, b(θ) = ln
(
1 + eθ

)
µ ≜ E(y) = b′(θ) = eθ

1 + eθ
= π

Var(y) = a(ϕ)b′′(θ) = π(1 − π)/m = µ(1 − µ)/m

Variance depends on the mean! It reaches maximum at µ = 1/2.

Poisson: a(ϕ) = 1, b(θ) = eθ

E(y) = b′(θ) = eθ = µ

Var(y) = a(ϕ)b′′(θ) = µ

Variance = mean!
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Variance function

In general,
Var(y) = a(ϕ)b′′(θ)

a(ϕ) does not depend on µ
b′′(θ) depends on µ only

We define
V (µ) ≜ b′′(θ)

as the variance function.

Gaussian: V (µ) = 1
Binomial: V (µ) = µ(1 − µ)
Poisson: V (µ) = µ
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Systematic component

Same as the LM, for covariates x1, · · · , xp, a linear predictor is

η ≜
p∑

j=1
βjxj
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Link function

A link function g describes how the mean µ depends on the linear
predictor η : η = g(µ). We assume that g is monotone (therefore it is
one-to-one) and differentiable.

A canonical link is the link function such that η = θ.
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Link function

Why do we need more complicated link functions than the simple identity
link function? In other words, why can’t we model the mean directly as a
function of covariates using an additive linear function?

the linear predictor η =
∑p

j=1 βjxj can take any value in (−∞, ∞).
the link function is to define the scale over which the systematic
component is additive.
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Common link functions for Binomial data

Binomial: assume that 0 < µ < 1

1 logit: g(z) = ln z
1−z . It is the canonical link since η = ln µ

1−µ = θ

2 probit: g(z) = Φ−1(z), where Φ is the standard Gaussian CDF. Then
η = Φ−1(µ)

3 complementary log-log: g(z) = ln{− ln(1 − z)},
i.e. η = ln{− ln(1 − µ)}
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Comparison of links for Binomial data

The logit and the probit links are almost linearly related i the middle
(specifically when .1 ≤ µ ≤ .9 ). For this reason it is usually difficult
to discriminate between these two links on the grounds of
goodness-of-fit.
The complementary log-log link approaches to infinity slower and
approaches to minus infinity faster than the logit and probit links.
Different link functions can be motivated from latent variable models.
Logit, probit and complementary log-los links correspond to logistic,
Gaussian and extreme value CDFs for the latent variable.
The choice of link is usually made based on assumptions derived from
physical knowledge or simple convenience.
The logit link is the most popular choice because it is the canonical
link and parameters have nice interpretations based on odds ratio. No
simple interpretations for other links.
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Interpretations of parameters in a LM - review

Consider the following simple LM

y = β0 + β1x + ϵ.

The parameter β1 has the simple interpretation that the effect of a unit
change in x is to increase the expected response by β1.
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Interpretations of parameters - Binomial with logit link

Now for Binomial data with logit link, consider a similar model

ln π

1 − π
= β0 + β1x

or equivalently,
odds(x) ≜ π

1 − π
= exp (β0 + β1x)

Then
odds(x + 1) = odds(x) × exp (β1) .

Interpretation of β1 : the effect of a unit change in x is to increase the
odds by a factor exp (β1) · exp (β1) is often called odds ratio. When there
are multiple independent variables, the interpretation remains the same
with other independent variables being fixed.
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Link function for Poisson data

Poisson: assume that µ > 0. The canonical link is

g(z) = ln z

That is
η = ln µ
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Summary
A GLM has three components: - Random component: exponential family

y ∼ exp
{yθ − b(θ)

a(ϕ) + c(y , ϕ)
}

Systematic component: linear predictor η =
∑p

j=1 βjxj
Link g : depends on the type of data, e.g. logit link for Binomial data
and log link for Poisson data

Two key characteristics of a LM are

linear dependence on unknown parameters
additive random error

Neither one is true for the GLM (except for the Gaussian case). Therefore,
we don’t write the model in the form of observation $=$ linear
predictor + random error
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Some common GLMs

Gaussian Binomial Poisson
Notations N

(
µ, σ2) B(m, π)/m P(µ)

Range of y (−∞, ∞) {0, 1} {0, 1, 2, · · · }
Dispersion parameter σ2 1 1

Canonical parameter θ µ logit (π) ln µ

Canonical link identity logit ln
Mean µ(θ) µ eθ/

(
1 + eθ

)
eθ

Variance function V (µ) 1 µ(1 − µ) µ
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Maximum likelihood estimation of parameters

For a GLM, the log-likelihood of a single observation is (subscript i
omitted for now)

l = yθ − b(θ)
a(ϕ) + c(y , ϕ)

Using the chain rule,
∂l
∂βj

= ∂l
∂θ

dθ

dµ

dµ

dη

∂η

∂βj

We need to compute each component.
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Computation of components

From the fact that b′(θ) = µ, we have

∂l
∂θ

= y − b′(θ)
a(ϕ) = y − µ

a(ϕ)

Again, using the fact that b′(θ) = µ,

dµ

dθ
= b′′(θ) = V

where V is the variance function. Therefore,

dθ

dµ
= 1

V
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Computation of components

Since η = g(µ), we have
dµ

dη
= 1

g ′(µ)

Since η =
∑p

j=1 βjxj , we have

∂η

∂βj
= xj
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First derivative of the log-likelihood

Putting the pieces together, we have

∂l
∂βj

= y − µ

a(ϕ)
1
V

1
g ′(µ)xj

= ϖ

a(ϕ)(y − µ)g ′(µ)xj

where
ϖ = 1

V (g ′(µ))2
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Full likelihood

The log-likelihood of all n observations is

l =
n∑

i=1
li =

n∑
i=1

{yiθ − b(θ)
ai(ϕ) + c (yi , ϕ)

}

Note: we allow a different function ai(ϕ) for each observation.

The score statistic

uj ≜
∂l
∂βj

=
n∑

i=1

∂li
∂βj

=
n∑

i=1

ϖi
ai(ϕ) (yi − µi) g ′ (µi) xij
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Matrix form

u ≜

 u1
...

up

 = ∂l
∂β

=

 x11 · · · xn1
...

...
...

x1p · · · xnp




ϖ1
a1(ϕ)

. . .
ϖn

an(ϕ)


 (y1 − µ1) g ′ (µ1)

...
(yn − µn) g ′ (µn)



= XT W

 (y1 − µ1) g ′ (µ1)
...

(yn − µn) g ′ (µn)



where

W ≜

 ϖ1
a1(ϕ)

. . .
ϖn

an(ϕ)


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Score equation

We want to estimate β by solving the score equation

u = XT W

 (y1 − µ1) g ′ (µ1)
...

(yn − µn) g ′ (µn)

 = 0

Yaqi Shi Module 8: Generalized linear regression July 22, 2024 27 / 48



Numerical solution

In the score equation, the weight matrix W −1 is unknown and may depend
on β. Therefore, the score equation is a non-linear system of equations
and can’t be solved analytically. We need to compute them numerically
using an iterative scheme. A common approach is the Newton-Raphson
procedure.
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Newton-Raphson procedure
Suppose that we want to find the maximizer of a function f (z). Using
Taylor expansion, we approximate f near z0 by

f (z) ≈ f (z0) + uT (z − z0) + 1
2 (z − z0)T H (z − z0) ≜ h(z)

u = (∂f /∂z)|z=z0
: gradient

H =
(
∂2f /∂z∂zT

)
|z=z0 : Hessian

Note that h(z) is a quadratic function since u and H are fixed. We can
maximize h(z) by solving

∂h(z)
∂z = u + H (z − z0) = 0.

The maximizer is
z = z0 − H−1u
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Newton-Raphson procedure

Newton-Raphson Algorithm

(1) Select a starting point z(0)

(2) At iteration I + 1,

z(I+1) = z(I) −
(
H(I)

)−1
u(I)

or equivalently, solve the equation

H(I)z(I+1) = H(I)z(I) − u(I)

(3) Iterate the second step until convergence
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Binomial cases
We have independent observations

zi ∼ B (mi , πi) , yi = zi/mi , i = 1, · · · , n

with density function

f (yi ; θ, ϕ) = exp
{

mi [yi logit (πi) + ln (1 − πi)] + ln
(

mi
miyi

)}

Since ai(ϕ) = 1/mi , we have

wi = mi

Since Vi = πi (1 − πi), we have

ϖi = 1/
(
πi (1 − πi)

[
g ′ (µi)

]2)
.
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Binomial cases

Furthermore, for the logit link,

g(µ) = ln µ

1 − µ
.

Then
g ′(µ) = 1

µ(1 − µ)
Thus,

ϖi = πi (1 − πi)

and

W (l) =


m1π

(l)
1

(
1 − π

(l)
1

)
. . .

mnπ
(l)
n
(
1 − π

(l)
n
)
 .
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Goodness-of-fit

We now introduce the concept of deviance: a measure of goodness-of-fit.
Let us consider two extreme models:

Null model: µ = constant (equivalently, η = constant, i.e. intercept
only). All variations in observations are due to random component.
This model is usually too simple.
Saturated model: n parameters which leads to interpolation µ̂i = yi .
All variations in observations are due to systematic component.
Simply repeating the data, this model is uninformative.
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Scaled deviance

For a model M with p parameters, we define the scaled deviance as

D∗
M ≜ −2 ln maximum likelihood under model M

maximum likelihood under the saturated model

Assume that ai(ϕ) has the special form ai(ϕ) = ϕ/wi . Denote θ̂i and θ̃i as
estimates under model M and the saturated model. Then

lM =
n∑

i=1

{
wi
[
yi θ̂i − b

(
θ̂i
)]

/ϕ + c (yi , ϕ)
}

lS =
n∑

i=1

{
wi
[
yi θ̃i − b

(
θ̃i
)]

/ϕ + c (yi , ϕ)
}
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Deviance

Therefore,

D∗
M = 2 (lS − lM)

= 2
n∑

i=1
wi
[
yi
(
θ̃i − θ̂i

)
− b

(
θ̃i
)

+ b
(
θ̂i
)]

/ϕ

≜ DM/ϕ

where
DM ≜ 2

n∑
i=1

wi
[
yi
(
θ̃i − θ̂i

)
− b

(
θ̃i
)

+ b
(
θ̂i
)]

is defined as the deviance.
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Examples of deviances

Deviance
Gaussian

∑n
i=1 (yi − µ̂i)2 (RSS)

Binomial 2
∑n

i=1 {yi ln (yi/µ̂i) + (mi − yi) ln ((mi − yi) / (mi − µ̂i))}
Poisson 2

∑n
i=1 {yi ln (yi/µ̂i) − (yi − µ̂i)}
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Distribution of deviance

For Gaussian data,
D∗

M = DM/ϕ ∼ χ2
n−p.

For non-Gaussian data, the χ2 distribution holds approximately under
certain conditions:

Binomial: miπi (1 − πi) → ∞
Poisson: µi → ∞

Standard asymptotic argument with n → ∞ requires the number of
parameters being fixed. It does not apply to deviance since the number of
parameters in the saturated model is n. Therefore, the χ2 approximation
do not hold as n → ∞.
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Generalized Pearson X 2 statistic

Another measure of the goodness-of-fit is the generalized Pearson X 2

statistic
X 2 =

n∑
i=1

(yi − µ̂i)2

V (µ̂i)
.

For Gaussian data, it is again the RSS and

X 2/ϕ ∼ χ2
n−p

For non-Gaussian data, the χ2 distribution hold asymptotically.
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Estimates of the dispersion parameter

When ϕ is unknown, based on above χ2 approximations, two approximatly
unbiased estimate of the dispersion parameter ϕ are

ϕ̂ = DM
n − p

ϕ̃ = X 2

n − p

Note: for binary data, ϕ̃ is consistent while ϕ̂ is not. ϕ̃ usually has smaller
bias than ϕ̂.
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Over- and Under-dispersion
Over-dispersion occurs when variance of the response variable exceeds the
nominal value. That is,

Var(y) > a(ϕ)b′′(θ)

Similarly, under-dispersion occurs when variance of the response variable
falls short of the nominal value. That is,

Var(y) < a(ϕ)b′′(θ)

Binomial: over-dispersion means that

Var(y) > mπ(1 − π)

Poisson: over-dispersion means that

Var(y) > µ
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Over- and Under-dispersion

Over-dispersion is quite common in practice. It is wise to be cautious
and assume that over-dispersion is present unless it is shown to be
absent.
Over-dispersion can arise in a number of ways. One common situation
will be given as an illustration.
Under-dispersion is less common.
Note that over-dispersion and under-dispersion are defined in terms of
parameters. How do we check them from data?
One simple (naive) approach is compare ϕ̂ and/or ϕ̃ with the nominal
values (ϕ = 1 for both Binomial and Poisson data) to find signs of
over-dispersion.
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How to deal with over-dispersion?

There are two general approaches: seak and model the extra variation

Binomial: Bete-Binomial model
Poisson: negative-Binomial model
In general, generalized linear mixed effects models ignore the
underlying mechanism and find a way to account for its effect. For
example, quasi-likelihood. The second approach is preferable unless
either the mechanism that produces over-dispersion is of interest, or
there are strong reasons to assume a particular form of random
effects. We will discuss the second approach (briefly) in this class.

Yaqi Shi Module 8: Generalized linear regression July 22, 2024 42 / 48



Quasi-likelihood

We do not have the likelihood since the distribution is unknown.
Quasi-likelihood is a technique which allow us to draw inference based on
the first two moments only.

The quasi-likelihood for observation y is defined as

Q(µ; y) ≜
∫ µ

y

w(y − t)
ϕV (t) dt

The quasi-likelihood score function is

q = ∂Q
∂µ

= w(y − µ)
ϕV (µ)

For a GLM with a(ϕ) = ϕ/w , q is the same as the score function
(

∂l
∂µ

)
.
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Properties of quasi-likelihood

Under above assumptions about the first two moments, q satisfies the
following properties

E(q) = 0

Var(q) = W
ϕV (µ)

−E
(

∂q
∂µ

)
= w

ϕV (µ)

Most first-order asymptotic theory connected with likelihood is based on
these three properties. Therefore, same asymptotic theory applies to the
quasi-likelihood.
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Dealing with over-dispersion

Quasi-likelihood is a general tool with many applications. Here we apply it
to deal with the problem of over-dispersion. For Binomial and Poisson
data, the dispersion parameter ϕ = 1. When there are signs of
over-dispersion, we may use the corresponding quasi-likelihood models
where the dispersion parameter ϕ is estimated.
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GLMs in R

“glm” has several options for family:

binomial (link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = ”1/mu∧2”)
poisson(link = "log")
quasi (link = "identity", variance = "constant")
quasibinomial (link = "logit")
quasipoisson(link = "log")

Yaqi Shi Module 8: Generalized linear regression July 22, 2024 46 / 48



Utility functions for glm

Summary statement: summary
Fits: coefficients, fitted.values
Model building: step, add1, drop1 and stepAIC in library MASS
Diagnostics: residuals, influence.measures. The
glm.diag.plots function in the boot library is very useful for
constructing diagnostic plots
Inference: anova
Prediction: predict Type help (function.name) in R to find out
more information about these functions.
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Exercise

More math derivation exercises of inference of GLMs are in this week’s
exercises.
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