
Module 9: Simulations and Parallel Computing

Yaqi Shi

July 23, 2024

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 1 / 35

Outline

In this module, we will review

Simulation Study
Rationale for Simulations
Parallel Computing in R

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 2 / 35

Simulation study

Simulation: A numerical techniques for conducting experiments on
the computer
Monte Carlo simulation: Computer experiment involving random
sampling from probability distributions

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 3 / 35

Why simulation?

To establish/validate the properties of statistical methods

Exact analytical derivations of properties are rarely possible
Large sample approximations to properties are often possible, but
need to evaluate their relevance to (finite) sample sizes likely to be
encountered in practice

Moreover, analytical results may require assumptions (e.g., normality)

But what happens when these assumptions are violated?
Analytical results, even large sample ones, may not be possible

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 4 / 35

Why simulation?

To establish/validate the properties of statistical methods

Exact analytical derivations of properties are rarely possible
Large sample approximations to properties are often possible, but
need to evaluate their relevance to (finite) sample sizes likely to be
encountered in practice

Moreover, analytical results may require assumptions (e.g., normality)

But what happens when these assumptions are violated?
Analytical results, even large sample ones, may not be possible

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 4 / 35

Considerations for simulation

Is an estimator biased in finite samples? Is it still consistent under
departures from assumptions? What is its sampling variance?
How does it compare to competing estimators on the basis of bias,
precision, etc.?

Does a procedure for constructing a confidence interval for a
parameter achieve the advertised nominal level of coverage?
Does a hypothesis testing procedure attain the advertised level or
size?
If it does, what power is possible against different alternatives to the
null hypothesis? Do different test procedures deliver different power?

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 5 / 35

Considerations for simulation

Is an estimator biased in finite samples? Is it still consistent under
departures from assumptions? What is its sampling variance?
How does it compare to competing estimators on the basis of bias,
precision, etc.?
Does a procedure for constructing a confidence interval for a
parameter achieve the advertised nominal level of coverage?
Does a hypothesis testing procedure attain the advertised level or
size?
If it does, what power is possible against different alternatives to the
null hypothesis? Do different test procedures deliver different power?

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 5 / 35

Monte Carlo simulation

Generate S independent data sets under the conditions of interest
Compute the numerical value of the estimator/test statistic T (data)
for each data set ⇒ T1, . . . , TS
If S is large enough, summary statistics across T1, . . . , TS should be
good approximations to the true sampling properties of the
estimator/test statistic under the conditions of interest

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 6 / 35

Simulations for properties of estimators

Example: Compare 3 estimators for the mean µ of a distribution based on
i.i.d. draws Y1, . . . , Yn

Sample mean T (1)

Sample 20% trimmed mean T (2)

Sample median T (3)

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 7 / 35

Simulations for properties of estimators (cont’d)
Simulation procedure: For a particular choice of µ, n, and true
underlying distribution

Generate independent draws Y1, . . . , Yn from the distribution
Compute T (1), T (2), T (3)

Repeat S times T (1)
1 , . . . , T (1)

S ; T (2)
1 , . . . , T (2)

S ; T (3)
1 , . . . , T (3)

S
Compute for k = 1, 2, 3

µ̂ = S−1
S∑

s=1
T (k)

s = T̄ (k), b̂ias = T̄ (k) − µ

σ̂ =

√√√√(S − 1)−1
S∑

s=1

(
T (k)

s − T̄ (k)
)2

M̂SE = S−1
S∑

s=1

(
T (k)

s − µ
)2

≈ ŜD
2 + b̂ias

2

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 8 / 35

Simulations for properties of estimators (cont’d)

Another important property we care about is the relative efficiency (RE).

If the estimators are unbiased,

RE =
var

(
T (1)

)
var

(
T (2))

If the estimators are biased,

RE =
MSE

(
T (1)

)
MSE

(
T (2))

In either case RE < 1 means estimator 1 is preferred (estimator 2 is
inefficient relative to estimator 1 in this sense)

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 9 / 35

Set up parameters

set.seed(123)
number of simulations
S <- 1e5
sample size
n <- 1000
mu and sigma
mu <- 1
sigma <- sqrt(5 / 3)
function
trimmean <- function(Y) mean(Y, 0.2)

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 10 / 35

Run Simulation (for loop)
start_time <- Sys.time()
t1 <- t2 <- t3 <- c()
for (s in 1:S) {

generate data
dat <- rnorm(n, mu, sigma)
calculate T1
t1 <- c(t1, mean(dat))
calculate T2
t2 <- c(t2, trimmean(dat))
calculate T3
t3 <- c(t3, median(dat))

}
end_time <- Sys.time()
end_time - start_time

Time difference of 1.622313 mins

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 11 / 35

Bias?

mean(t1 - 1)

[1] 0.0002025304

mean(t2 - 1)

[1] 0.0001590339

mean(t3 - 1)

[1] 6.529179e-05

All estimators are shown minimal bias, why?

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 12 / 35

Sample Variance?

var(t1)

[1] 0.001661072

var(t2)

[1] 0.001902612

var(t3)

[1] 0.00261475

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 13 / 35

Relative Efficiency?

cat("T1 vs T2", (mean(t2 - 1)ˆ2 + var(t2)) /
(mean(t1 - 1)ˆ2 + var(t1)), "\n")

T1 vs T2 1.145398

cat("T1 vs T3", (mean(t3 - 1)ˆ2 + var(t3)) /
(mean(t1 - 1)ˆ2 + var(t1)), "\n")

T1 vs T3 1.574098

cat("T2 vs T3", (mean(t3 - 1)ˆ2 + var(t3)) /
(mean(t2 - 1)ˆ2 + var(t2)), "\n")

T2 vs T3 1.374279

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 14 / 35

Run Simulation (lapply)
start_time <- Sys.time()
t <- lapply(1:S, function(s) {

generate data
dat <- rnorm(n, mu, sigma)
calculate T1
t1 <- mean(dat)
calculate T2
t2 <- trimmean(dat)
calculate T3
t3 <- median(dat)
c(t1, t2, t3)

})
end_time <- Sys.time()
end_time - start_time

Time difference of 17.78292 secs

convert t to a dataframe with column t1, t2, t3
t_final <- do.call(rbind, t)

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 15 / 35

Run Simulation (Vectorize)

generate.normal <- function(S, n, mu, sigma) {
dat <- matrix(rnorm(n * S, mu, sigma), ncol = n, byrow = T)
out <- list(dat = dat)
return(out)

}

start_time <- Sys.time()
out <- generate.normal(S, n, mu, sigma)
out_mean <- apply(out$dat, 1, mean)
out_trimmean <- apply(out$dat, 1, trimmean)
out_median <- apply(out$dat, 1, median)
end_time <- Sys.time()
end_time - start_time

Time difference of 27.87708 secs

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 16 / 35

Introduction to Embarrassing Parallelism

for loop execute each task sequentially
Modern computers are built in with multiple cores that allows you do
the above jobs in parallel
Rise of high performance computing (HPC) cluster
The improvement is not linear!

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 17 / 35

Parallel in local computer (foreach)
most intuitive parallel algorithm, just like for loop
need to set-up the local cluster

library(doParallel)

Loading required package: foreach

Loading required package: iterators

Loading required package: parallel

detectCores()

[1] 8

cl <- makeCluster(8)
registerDoParallel(cl)
start_time <- Sys.time()
t <- foreach(s = 1:S, .combine = "rbind") %dopar% {

generate data
dat <- rnorm(n, mu, sigma)
calculate T1
t1 <- mean(dat)
calculate T2
t2 <- trimmean(dat)
calculate T3
t3 <- median(dat)

c(t1, t2, t3)
}
end_time <- Sys.time()
end_time - start_time

Time difference of 38.80783 secs

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 18 / 35

Parallel in local computer (mclapply)

The mclapply() function essentially parallelizes calls to lapply()

library(parallel)

start_time <- Sys.time()
t <- mclapply(1:S, function(s) {

generate data
dat <- rnorm(n, mu, sigma)
calculate T1
t1 <- mean(dat)
calculate T2
t2 <- trimmean(dat)
calculate T3
t3 <- median(dat)
c(t1, t2, t3)

}, mc.cores = 4)
end_time <- Sys.time()
end_time - start_time

Time difference of 9.236658 secs

convert t to a dataframe with column t1, t2, t3
t_final <- do.call(rbind, t)

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 19 / 35

Parallel in local computer (parLapply)
cl <- makeCluster(8)
registerDoParallel(cl)
start_time <- Sys.time()
t <- parLapply(cl = cl, X = 1:S, function(s) {

generate data
dat <- rnorm(n, mu, sigma)
calculate T1
t1 <- mean(dat)
calculate T2
t2 <- trimmean(dat)
calculate T3
t3 <- median(dat)
c(t1, t2, t3)

})

Error in checkForRemoteErrors(val): 8 nodes produced errors; first error: object ’n’ not found

end_time <- Sys.time()
end_time - start_time

Time difference of 0.02912617 secs

convert t to a data frame with column t1, t2, t3
t_final <- do.call(rbind, t)

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 20 / 35

parLapply continued

need to export the environment

clusterExport(cl, varlist = c("n", "mu", "sigma", "trimmean"))
start_time <- Sys.time()
t <- parLapply(cl = cl, X = 1:S, function(s) {

generate data
dat <- rnorm(n, mu, sigma)
calculate T1
t1 <- mean(dat)
calculate T2
t2 <- trimmean(dat)
calculate T3
t3 <- median(dat)
c(t1, t2, t3)

})
end_time <- Sys.time()
end_time - start_time

Time difference of 6.948363 secs

convert t to a data frame with column t1, t2, t3
t_final <- do.call(rbind, t)

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 21 / 35

Error Handling (foreach)

t <- foreach(
i = 1:1e4, .combine = "rbind",
.packages = "matlib"

) %dopar% {
generate data
A <- matrix(data = rbinom(4, 1, 0.5), nrow = 2)
inv(A)

}

The error may only occur occasionally
You want to ignore the error and finish your job

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 22 / 35

Error Handling (foreach)

t <- foreach(
i = 1:1e4, .packages = "matlib",
.errorhandling = "pass"

) %dopar% {
generate data
A <- matrix(data = rbinom(4, 1, 0.5), nrow = 2)
inv(A)

}

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 23 / 35

Error Handling (foreach)

t <- foreach(
i = 1:1e4, .packages = "matlib",
.errorhandling = "remove"

) %dopar% {
generate data
A <- matrix(data = rbinom(4, 1, 0.5), nrow = 2)
inv(A)

}

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 24 / 35

Error Handling (tryCatch)

tryCatch enables you to handle errors and warnings

t <- parLapply(cl, X = 1:1e4, fun = function(x) {
generate data
tryCatch(

{
A <- matrix(data = rbinom(4, 1, 0.5), nrow = 2)
inv(A)

},
error = function(e) {

code that will be executed in the event of an error
return(NA)

}
)

})

head(t, 2)

[[1]]
[1] NA
##
[[2]]
[1] NA

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 25 / 35

Error Handling (tryCatch)

Often times, warning messages are not outputed in the parallel process

sigma <- -1
t <- parLapply(cl = cl, X = 1:S, function(s) {

generate data
dat <- rnorm(n, mu, sigma)
calculate T1
t1 <- mean(dat)
calculate T2
t2 <- trimmean(dat)
calculate T3
t3 <- median(dat)
c(t1, t2, t3)

})
head(t, 2)

[[1]]
[1] 0.9859186 0.9985560 1.0150561
##
[[2]]
[1] 0.9920080 0.9749793 0.9387618

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 26 / 35

Error Handling (tryCatch)
sigma <- -1
t <- parLapply(cl = cl, X = 1:S, function(s) {

tryCatch(
{

generate data
dat <- rnorm(n, mu, sigma)
calculate T1
t1 <- mean(dat)
calculate T2
t2 <- trimmean(dat)
calculate T3
t3 <- median(dat)
c(t1, t2, t3)

},
warning = function(w) {

code that will be executed in the event of a warning
return(w)

}
)

})
head(t, 2)

[[1]]
[1] 0.9873500 0.9726556 0.9733606
##
[[2]]
[1] 1.021738 1.041941 1.042783

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 27 / 35

Parallel in HPC

Using Niagara cluster (Compute Canada) as an example, it contains
2024 nodes, each with 40 cores, for a total of 80,640 cores.
Say if you want to request 20 cores, there are two ways to request it

1 node and all 20 cores on the node
different nodes

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 28 / 35

One node Prallel

cl <- makeCluster(20)
registerDoParallel(cl)
t <- parLapply(cl = cl, X = 1:S, function(s) {

generate data
dat <- rnorm(n, mu, sigma)
calculate T1
t1 <- mean(dat)
calculate T2
t2 <- trimmean(dat)
calculate T3
t3 <- median(dat)
c(t1, t2, t3)

})

convert t to a data frame with column t1, t2, t3
t_final <- do.call(rbind, t)

save the results
saveRDS(t_final, "t_final.rds")

save the R script as example.R

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 29 / 35

One node Prallel

Use module spider r to check the requirement for loading R

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=20
#SBATCH --time=0-01:30 # time (DD-HH:MM)
module load gcc/9.3.0 r/4.0.2

Rscript example.R

Save it as submit.sh

Submit the job by sbatch submit.sh

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 30 / 35

Multiple Nodes

things are much more complicated
sometimes cannot be avoided, say if you want to request 800 cores
need to use OpenMPI

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 31 / 35

Multiple Nodes

cl <- makeCluster(800, type = "MPI")
registerDoParallel(cl)
t <- parLapply(cl = cl, X = 1:S, function(s) {

generate data
dat <- rnorm(n, mu, sigma)
calculate T1
t1 <- mean(dat)
calculate T2
t2 <- trimmean(dat)
calculate T3
t3 <- median(dat)
c(t1, t2, t3)

})

convert t to a data frame with column t1, t2, t3
t_final <- do.call(rbind, t)

save the results
saveRDS(t_final, "t_final.rds")

save the R script as example.R

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 32 / 35

Multiple Nodes

#!/bin/bash
#SBATCH --nodes=20
#SBATCH --ntasks-per-node=40
#SBATCH --time=0-01:30 # time (DD-HH:MM)
module load gcc/9.3.0 openmpi/4.0.3 r/4.0.2

R_PROFILE=${HOME}/R/x86_64-pc-linux-gnu-library/4.0/snow/
RMPISNOWprofile;
export R_PROFILE
mpirun -np 800 -bind-to core:overload-allowed R CMD BATCH
--no-save example.R

Save it as submit.sh

Submit the job by sbatch submit.sh

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 33 / 35

Passing argument

sometimes you may want to run for a set of arguments
e.g. n = c(100, 200, 300, 400)

args <- commandArgs(TRUE)
n <- args[1]

cl <- makeCluster(800, type = "MPI")
registerDoParallel(cl)
clusterExport(cl, varlist = c("n", "mu", "sigma", "trimmean"))

t <- parLapply(cl = cl, X = 1:S, function(s) {
generate data
dat <- rnorm(n, mu, sigma)
calculate T1
t1 <- mean(dat)
calculate T2
t2 <- trimmean(dat)
calculate T3
t3 <- median(dat)
c(t1, t2, t3)

})

convert t to a data frame with column t1, t2, t3
t_final <- do.call(rbind, t)
save the results
saveRDS(t_final, "t_final.rds")

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 34 / 35

Passing argument

#!/bin/bash
#SBATCH --nodes=20
#SBATCH --ntasks-per-node=40
#SBATCH --time=0-01:30 # time (DD-HH:MM)
module load gcc/9.3.0 openmpi/4.0.3 r/4.0.2

R_PROFILE=${HOME}/R/x86_64-pc-linux-gnu-library/4.0/snow/RMPISNOWprofile; export R_PROFILE
mpirun -np 800 -bind-to core:overload-allowed R CMD BATCH --no-save "--args $n" example.R

Save it as submit.sh

Submit the job by

for n in 100 200 300 400
do

sbatch --export=n=$n submit.sh
done

Yaqi Shi Module 9: Simulations and Parallel Computing July 23, 2024 35 / 35

