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Outline

In this module, we will continue our discussion on Bootstrap.
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What is bootstrap?

A widely applicable, computer intensive resampling method used to
compute standard errors, confidence intervals, and significance tests.

Jianhui Gao Module 10: Bootstrap July 25, 2025 3 / 28



Why bootstrap?

The exact sampling distribution of an estimator can be difficult to
obtain
Asymptotic expansions are sometimes easier but expressions for
standard errors based on large sample theory may not perform well in
finite samples
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https://online.stat.psu.edu/stat555/node/119/
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Example: estimate the variance of an estimator

Now let VarF (Tn) denote the variance of Tn. The subscript F means the
variance is a function of F where F is the CDF of X . If we know F , we can
directly compute the variance. For example, if then x1, · · · , xw iid

Tn = X̄n, = 1
n

n∑
i=1

xi

VarF (Tn) = n−1
(∫

x2dF (x)−
(∫

xdF (x)
)2
)

which is a function of F .
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Example: estimate the variance of an estimator

When F is unknown, one can use an estimate of F , e.g., the empirical CDF
F̂n, i.e.,

F̂n(x) =
∑n

i=1 1 (Xi ≤ x)
n .

We then use a plug-in estimator for VarF̂n
(Tn) :

VarF̂n
(Tn) = n−1

(∫
x2dF̂n(x)−

(∫
xdF̂n(x)

)2
)

.
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Example: estimate the variance of an estimator

However, the plug-in estimator above can be hard to compute, we can then
approximate it with a simulation estimate, denoted by Vboot .

The following algorithm illustrate how one can do this through bootstrap.

Algorithm 1: Bootstrap variance estimation algorithm
Input data (X1, . . . , Xn) ; Number of iteration B;
for i ← 0 to B do

Draw X ∗
1,i , . . . , X ∗

n,i ∼ F̂n;
Compute T ∗

n,i = g
(
X ∗

1,i , . . . , X ∗
n,i

)
;

end
Vboot = 1

B
∑B

i=1

(
T ∗

n,i − 1
B
∑B

j=1 T ∗
n,j

)2
.

By law of large numbers, we have Vboot
a.s.−→ VarF̂n

(Tn) as B →∞.
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The bootstrap principle

Suppose X = {X1, . . . , Xn} is a sample used to estimate some parameter
θ = T (P) of the underlying distribution P. To make inference on θ, we are
interested in the properties of our estimator θ̂ = S(X ) for θ.

If we knew P,
we could obtain

{
X b | b = 1, . . . B

}
from P and use Monte-Carlo to

estimate the sampling distribution of θ̂

However, we don’t,
we do the next best thing and resample from original sample, i.e. the
empirical distribution, P̂
we expect the empirical distribution to estimate the underlying
distribution well by the Glivenko-Cantelli Theorem
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Why bootstrap works

Definition 2.1. Let F , G be two CDF’s on a sample space X . Let ρ(F , G) be
a metric on the space of CDF’s on X . We say G∗

n is weakly ρ-consistent if

ρ (G∗
n , Gn) P→ 0

as n→∞. Similarly, G∗
n is strongly ρ-consistent if

ρ (G∗
n , Gn) a.s.−→ 0.

Jianhui Gao Module 10: Bootstrap July 25, 2025 10 / 28



Why bootstrap works

Now the measure of closeness between two CDF’s depends on the metric ρ.
The following two metrics are commonly used for the CDF’s:

(i) Kolmogorov metric:

K (F , G) = sup
x∈R
|F (x)− G(x)|.

(ii) Mallows-Wasserstein metric:

l2(F , G) = inf
TF ,G

(
E |Y − X |2

)1/2
,

where TF ,G is the collection of all possible joint distribution of the pair
(X , Y ) whose marginal distributions are F , G . The following theorem
illustrates a special case of the bootstrap theory.
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Why bootstrap works

Theorem. Suppose X1, . . . , Xn
i.i.d.∼ F and E

(
X 2

i
)

<∞. Let

Tn = g (X1, . . . , Xn) =
√

n(X̄ − µ).

For the bootstrap version T ∗
n =
√

n(X̄ ∗
n − X̄n):

K (G∗
n , Gn) a.s.−−→ 0 and l2(G∗

n , Gn) a.s.−−→ 0

where:

Gn(t) = P(Tn ≤ t) (True CDF)
G∗

n (t) = P(T ∗
n ≤ t | X1, . . . , Xn) (Bootstrap CDF)
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Practical Implementation

Monte Carlo Approximation
For finite samples, estimate G∗

n via:

Ĝ∗
n (t) = 1

B

B∑
b=1

I(T ∗
n,b ≤ t)

where:
B = number of bootstrap samples
T ∗

n,b =
√

n(X̄ ∗
n,b − X̄n)

Convergence
B →∞ Ĝ∗

n → G∗
n

n→∞ G∗
n → Gn
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Bootstrap confidence intervals
For a statistic Tn with bootstrap replicates {T ∗

n,b}Bb=1:

Normal Approximation CI (requires normality):

Tn ± zα/2ŝeboot

where ŝeboot =
√

1
B−1

∑B
b=1(T ∗

n,b − T̄ ∗)2

Pivotal (Basic) Bootstrap CI:(
2Tn − T ∗

((1−α/2)B), 2Tn − T ∗
((α/2)B)

)
Percentile Bootstrap CI:(

T ∗
((α/2)B), T ∗

((1−α/2)B)

)
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Bootstrap confidence intervals

Important Notes
Normal CI assumes asymptotic normality of Tn
Pivotal CI inverts the bootstrap distribution
Percentile CI is simple but may be biased
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Forms of bootstrap

Based on how the population is estimated,
1 Nonparametric bootstrap
2 Parametric bootstrap
3 Empirical Bootstrap (Paired Bootstrap)
4 Residual Bootstrap
5 Wild Bootstrap
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Nonparametric bootstrap (resampling)
Core Idea
Resample with replacement from original data to approximate sampling
distribution of statistic θ̂ = S(D)

1 Resampling: Generate B bootstrap datasets
D∗(1), . . . , D∗(B) where each D∗(b) contains n observations drawn
with replacement from original data D = (X1, . . . , Xn)

2 Replication: Compute bootstrap statistics
θ̂∗(b) = S(D∗(b)) for b = 1, . . . , B

3 Standard Error Estimation:

ŝeboot =

√√√√ 1
B − 1

B∑
b=1

(
θ̂∗(b)− θ̄∗

)2

where θ̄∗ = 1
B
∑B

b=1 θ̂∗(b)
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Parametric bootstrap

Assumes the data comes from a known distribution with unknown
parameters

First estimate the parameters from the data and then use the
estimated distribution to simulate the samples
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Bootstrap for Regression

Bootstrap can also be used to conduct statistical inference for regression
model. Let (X1, Y1) , . . . , (Xn, Yn) be the observed data and

E (Yi | Xi = x) = β0 + β1x ,

i.e.,
Yi = β0 + β1Xi + ϵi .

There are several variants to the bootstrap under regression setting.
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Empirical Bootstrap (Paired Bootstrap)

We generate a new sets of i.i.d. observations (X ∗
1 , Y ∗

1 ) , . . . , (X ∗
n , Y ∗

n ) such
that for each l ,

P (X ∗
l = Xi , Y ∗

l = Yi) = 1
n

for all i . Similar to bootstrap estimation of variance, we repeat this
procedure B times and fit a linear regression model for each of the
generated paired data:(

X ∗(1)
1 , Y ∗(1)

1

)
, . . . ,

(
X ∗(1)

n , Y ∗(1)
n

) fit linear regression−→ β̂
∗(1)
0 , β̂

∗(1)
1

. . .(
X ∗(B)

1 , Y ∗(B)
1

)
, . . . ,

(
X ∗(B)

n , Y ∗(B)
n

) fit linear regression−→ β̂
∗(B)
0 , β̂

∗(B)
1 .
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Empirical Bootstrap (Paired Bootstrap)
We then estimate the bootstrap variance

V̂ar
(
β̂0
)

= 1
B

B∑
l=1

(
β̂

∗(l)
0 − β̄∗

0

)2
, β̄∗

0 = 1
B

B∑
i=1

β̂
∗(l)
0 ,

and

V̂ar
(
β̂1
)

= 1
B

B∑
l=1

(
β̂

∗(l)
1 − β̄∗

1

)2
, β̄∗

1 = 1
B

B∑
l=1

β̂
∗(l)
1 .

We can also obtain the bootstrap CI as

β̂0 ± z1−α/2

√
V̂ar

(
β̂0
)

and
β̂1 ± z1−α/2

√
V̂ar

(
β̂1
)
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Empirical Bootstrap (Paired Bootstrap)

Although empirical bootstrap works well in practice, it may lead to a bad
results, especially in the presence of influential observations (some Xi ’s are
very far away from the others).

This will also strongly affect the empirical bootstrap in the sense that if an
empirical bootstrap does not select these influential points, the regression
coefficients can be very different.
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Residual Bootstrap
To solve the problem of empirical bootstrap illustrated previously, we may
use the residual bootstrap. We first fit the original data to obtain the OLS
estimate β̂0, β̂1. Define

ei = Yi − Ŷi = Yi − β̂0 − β̂1Xi .

ei here are the fitted residuals and can be regarded as a good approximation
of ϵi . The residual bootstrap generate i.i.d. ϵ̂∗

1, . . . , ϵ̂∗
n such that for each ϵ̂∗

l ,

P (ϵ̂∗
l = ei) = 1

n .

Then we generate a new bootstrap sample

(X ∗
1 , Y ∗

1 ) , . . . , (X ∗
n , Y ∗

n )

via
X ∗

i = Xi , Y ∗
i = β̂0 + β̂1Xi + ϵ̂∗

i .
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Wild Bootstrap

Another issue usually occur in linear regression is the so called phenomenon
of heteroskedasticity, i.e., Var (ϵi | Xi) depends on the value of Xi .

Now residual bootstrap cannot deal with this issue. In particular, the
residual bootstrap will be unstable because the residual bootstrap will swap
all the residuals regardless of the value of the covariate. The solution to this
is through the wild bootstrap.

The wild bootstrap first generate i.i.d. random variables
V1, . . . , Vn ∼ N (0, 1) and then generate the bootstrap sample

(X ∗
1 , Y ∗

1 ) , . . . , (X ∗
n , Y ∗

n )

by
Y ∗

i = β̂0 + β̂1Xi + Viei , X ∗
i = Xi .
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Bootstrap hypothesis testing

boot_dat <- function(x, n, mu, std) {
newx <- sample(x, n, replace = T)
return((mean(newx) - mu)/(std/sqrt(n)))

}

pvalues_1 <- rep(NA, nsim)
pvalues_2 <- rep(NA, nsim)

for (i in 1:nsim){
x <- rnorm(n, mean = mu, sd = std)
stat <- abs((mean(x) - mu)/(std/sqrt(n)))
pvalues_1[i] <- 2*(1 - pnorm(stat))

newx <- x - mean(x) + mu
boot_scores <- sapply(1:nboot,

function(index) boot_dat(newx, n, mu, std))
boot_scores <- as.vector(boot_scores)
# hist(boot_scores)
# mean(boot_scores)
pvalues_2[i] <- length(which(boot_scores > stat))/length(boot_scores) +

length(which(boot_scores < (-stat)))/length(boot_scores)
}
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Failures of Bootstrap

Let X1, . . . , Xn
i.i.d.∼ unif (0, 1) and Mn = min (X1, . . . , Xn) be the

minimum of the sample. One can show that

nMn
D→ exp(1)

However, let M∗
n = min (X ∗

1 , . . . , X ∗
n ) be the minimum of a bootstrap

sample, then

P ( none of X ∗
1 , . . . , X ∗

n select Mn) =
(

1− 1
n

)n
≈ e−1,

which implies that
P (M∗

n = Mn) ≈ 1− e−1.

Therefore, M∗
n has a huge probability mass at Mn. This means the

distribution of M∗
n is very different from the distribution of Mn. The

detailed proof is left as homework.
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StatQuest videos

Check out these videos made by Josh Starmer with vivid illustration for the
boostrap!

Bootstrapping Main Ideas [link]

Using Bootstrapping to Calculate p-values [link]
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https://youtu.be/Xz0x-8-cgaQ
https://youtu.be/N4ZQQqyIf6k


Resources

This tutorial is based on

PennState STAT555 Statistical Analysis of Genomics Data [links].

Harvard’s Biostatistics Preparatory Course Methods [links].
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https://online.stat.psu.edu/stat555/node/119/
https://isabelfulcher.github.io/methodsprep/slides/Lecture_7/2018_Lecture_07.pdf

