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Outline

In this module, we will review linear regression.
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Linear regression

Model:
Yn×1 = Xn×pβp×1 + ϵn×1

Equivalently:
yi = xT

i β + ϵi , i = 1, . . . , n

Standard assumptions
yi independent (equivalently ϵi independent)
E (ϵi) = 0
var (ϵi) = σ2, constant
xi known, β to be estimated

More concisely:

E(Y | X ) = Xβ, var(Y | X ) = σ2I
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Interpretation of βj

Effect on the expected response of a unit change in jth explanatory
variable, all other variables held fixed
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Least squares estimation
Definition (minimize the residuals)

β̂LS := min
β

n∑
i=1

(
yi − xT

i β
)2

Equivalently,
β̂LS := min

β
(y − Xβ)T(y − Xβ)

Equivalently (L2 distance),
β̂LS := min

β
∥y − Xβ∥2

2

Equivalently, β̂ is the solution of the score equation
XT(y − Xβ) = 0

Solution
β̂LS =

(
XTX

)−1 (
XTy

)
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Another interpretation: the projection of Y onto the linear
subspace spanned by the columns of X
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Least squares estimation (cont’d)

Assume X is fixed,

Expected value

E
(
β̂LS

)
=

(
XTX

)−1
XTE(y) =

(
XTX

)−1 (
XTX

)
β = β

Variance

var
(
β̂LS

)
=

(
XTX

)−1
XT var(y)X

(
XTX

)−1

=
(
XTX

)−1
XTσ2IX

(
XTX

)−1

= σ2
(
XTX

)−1
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Assumptions for ordinary least squares

Linearity: the expectation of Y is linear in X1 . . . Xp
Independence: the ϵi are independent
Mean zero errors: the ϵi have mean zero, i.e. E [ϵi ] = 0
Equal variance (homoscedasticity): the ϵi have the same variance,
i.e. Var [ϵi ] = σ2
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What about normal distribution?
If we further assume ϵi ∼ N

(
0, σ2)

(and independent across i), then

y | X ∼ N
(
Xβ, σ2I

)
, and

likelihood function is

L
(
β, σ2; y

)
= 1

(2πσ2)n/2 exp
{

− 1
2σ2 (y − Xβ)T (y − Xβ)

}

log-likelihood function is

ℓ
(
β, σ2; y

)
= −n

2 log
(
σ2

)
− 1

2σ2 (y − Xβ)T(y − Xβ)

maximum likelihood estimate of β is

β̂ML =
(
XTX

)−1
XTy = β̂LS
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What about normal distribution? (cont’d)

distribution of β̂ is normal

β̂ ∼ Np

(
β, σ2

(
XTX

)−1
)

distribution of β̂j is

N
(

βj , σ2
(
XTX

)−1

jj

)
, j = 1, . . . , p

maximum likelihood estimate of σ2 is

1
n (y − X β̂)T(y − X β̂)

but we use
σ̃2 = 1

n − p (y − X β̂)T(y − X β̂)
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Maximum likelihood estiamtion vs. OLS

We did not place any distributional assumptions on the outcome,
We only required that E [ϵi ] = 0 with constant variance
In other words, OLS is a semiparametric method

Sometimes, people assume that ϵi ∼ N
(
0, σ2)

, which means

Yi ∼ N
(
β0 + β1Xi1 + . . . + β1Xip, σ2

)
If this additional assumption is made, then we can instead use maximum
likelihood estimation for β
This connects to a whole other class of models called generalized linear
models (GLMs)
Interestingly, in this case, you will end up with the same estimates for β
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Resources

This tutorial is based on

Nancy Reid’s STA2101 Methods of Applied Statistics [links]

Harvard’s Biostatistics Preparatory Course Methods [links].
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https://utstat.toronto.edu/reid/sta2101f/sep15-annotated.pdf
https://isabelfulcher.github.io/methodsprep/slides/Lecture_5/2018_Lecture_05.pdf

