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Outline

In this module, we will review generalized linear regression.
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Logistic regression

Each response is binary: yi = 1, 0
Explanatory variables xT

i as usual
Model

P (yi = 1 | xi) =
exp

(
x⊤

i β
)

1 + exp
(
x⊤

i β
)
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Generalized linear models (GLMs)

Generalized Linear Models extend the classical set-up to allow for a
wider range of distributions

GLMs have three pieces
1 random component: yi ∼ some distribution with E [yi |xi ] = µi
2 systematic component: xT

i β
3 The link function that links the random and systematic components

g (ui) = xT
i β

Distributions of yi comes from exponential family.
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Exponential family

The random variable Y belongs to the exponential family of distributions if
its support does not depend upon any unknown parameters and its density
or probability mass function takes the form

f (y | θ, ϕ) = exp
(yθ − b(θ)

a(ϕ) + c(y , ϕ)
)

where θ is the canonical parameter (related to the mean), ϕ is a dispersion
parameter (often related to the variance), b(θ) is the cumulant function
(which helps derive the mean and variance), and c(y , ϕ) is a normalization
term ensuring the density integrates (or sums) to 1.
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Example 1 Gaussian distribution
The Gaussian (Normal) distribution can be written in exponential family
form as:

f (y | µ, σ2) = exp

yµ − µ2

2
σ2 − y2

2σ2 − 1
2 log(2πσ2)


where:

θ = µ (natural parameter)
ϕ = σ2 (dispersion parameter)

b(θ) = θ2

2 (cumulant function)

c(y , ϕ) = − y2

2ϕ
− 1

2 log(2πϕ) (normalization term)
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Example 2 Poisson distribution

The Poisson distribution with parameter λ (rate parameter) can be written
in exponential family form as:

f (y | λ) = exp (y log λ − λ − log(y !))

where:

θ = log λ (natural parameter)
ϕ = 1 (dispersion parameter)

b(θ) = eθ (cumulant function)
c(y , ϕ) = − log(y !) (normalization term)
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Example 3 Binomial distribution
The Binomial distribution with parameters n (number of trials) and p
(success probability) can be written in exponential family form as:

f (y | p) = exp
(

y log
( p

1 − p

)
+ n log(1 − p) + log

(
n
y

))

where:

θ = log
( p

1 − p

)
(natural parameter, log-odds)

ϕ = 1 (dispersion parameter)
b(θ) = n log(1 + eθ) (cumulant function)

c(y , ϕ) = log
(

n
y

)
(normalization term)
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MGF of exponential family

MY (t) = E[etY ]

=
∫

ety f (y | θ, ϕ)dy

=
∫

exp
(

ty + yθ − b(θ)
a(ϕ) + c(y , ϕ)

)
dy

=
∫

exp
(

y(θ + ta(ϕ)) − b(θ)
a(ϕ) + c(y , ϕ)

)
dy

= exp
(

b(θ + ta(ϕ)) − b(θ)
a(ϕ)

)∫
exp
(

y(θ + ta(ϕ)) − b(θ + ta(ϕ))
a(ϕ) + c(y , ϕ)

)
dy

= exp
(

b(θ + ta(ϕ)) − b(θ)
a(ϕ)

)
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Mean of the exponential family

M ′
Y (t) = d

dt

[
exp

(b(θ + ta(ϕ)) − b(θ)
a(ϕ)

)]
= MY (t) · d

dt

(b(θ + ta(ϕ)) − b(θ)
a(ϕ)

)
(Chain rule)

= MY (t) · b′(θ + ta(ϕ)) · a(ϕ)
a(ϕ)

= MY (t) · b′(θ + ta(ϕ))

Evaluating at t = 0 (since MY (0) = 1):

M ′
Y (0) = b′(θ) = µ = E[Y ]
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Variance of the exponential family

M ′′
Y (t) = d

dt
[
MY (t) · b′(θ + ta(ϕ))

]
= M ′

Y (t) · b′(θ + ta(ϕ)) + MY (t) · b′′(θ + ta(ϕ)) · a(ϕ)

= MY (t) ·
[
(b′(θ + ta(ϕ)))2 + b′′(θ + ta(ϕ)) · a(ϕ)

]
Evaluating at t = 0:

M ′′
Y (0) = µ2 + b′′(θ)a(ϕ) = E[Y 2]

Thus the variance is:

Var(Y ) = M ′′
Y (0) − [M ′

Y (0)]2 = b′′(θ)a(ϕ)
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Link function

The second element of the generalization is that instead of modeling the
mean, as before, we will introduce a one-to-one continuous differentiable
transformation g(µi) of the mean µi = E [yi ] and model that

(µi) = ηi = x⊤
i β

where ηi is the linear predictor. The function g(·) is called the link function.
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Link function

Since g(·) is a one-to-one transformation, we can invert it to get the mean:

µi = g−1(ηi) = g−1(x⊤
i β)

Note that we do not transform the response variable yi itself, but rather the
mean of the response variable.
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Link function in R

“glm” has several options for family:

binomial (link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = ”1/mu∧2”)
poisson(link = "log")
quasi (link = "identity", variance = "constant")
quasibinomial (link = "logit")
quasipoisson(link = "log")
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MLE

An important practical feature of generalized linear models is that they can
all be fit to data using the same algorithm, a form of iteratively re-weighted
least squares (IRLS).

1 Initialize µ̂
(0)
i = yi + ϵ, η

(0)
i = g(µ̂(0)

i )
2 While not converged:

Working response: zi = η
(k)
i + (yi − µ̂

(k)
i )

(
dη
dµ

)
Weights: wi =

[
V (µ̂(k)

i )
(

dµ
dη

)2
]−1

Update: β(k+1) = (X⊤WX )−1X⊤Wz
Update η

(k+1)
i , µ̂

(k+1)
i
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Gaussian Special Case of IRLS
For linear regression (Y ∼ N(µ, σ2)):

Link: Identity g(µ) = µ

Variance: V (µ) = 1 (constant)

Weights: wi = 1 (equal weighting)

Working response: zi = yi (original data)

IRLS reduces to ordinary least squares:

β(k+1) = (X⊤X )−1X⊤y (single iteration)

Key observations:

Link derivative dµ
dη = 1

No reweighting needed (homoscedasticity)
Exact solution in one step
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Asymptotics

The asymptotic distribution of the MLE β̂ is given by:

√
n(β̂ − β) d−→ N(0, (X⊤WX )−1ϕ)

In the case of the Gaussian distribution, ϕ is the variance σ2, W is the
identity matrix, and the covariance matrix simplifies to: (X⊤X )−1σ2.
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