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Outline

In this module, we will review generalized linear regression.
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Logistic regression

@ Each response is binary: y; = 1,0
o Explanatory variables x,-T as usual
e Model

exp (X,-T B)

P(Yi:1|xi):m
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Generalized linear models (GLMs)

@ Generalized Linear Models extend the classical set-up to allow for a
wider range of distributions

@ GLMs have three pieces

© random component: y; ~ some distribution with E [y;|x;] = p;
@ systematic component: x; 3
@ The link function that links the random and systematic components

g(u)=x/p

@ Distributions of y; comes from exponential family.
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Exponential family

The random variable Y belongs to the exponential family of distributions if
its support does not depend upon any unknown parameters and its density
or probability mass function takes the form

fly|0,¢) =exp (yga_(;)w) + c(y, ¢))

where 6 is the canonical parameter (related to the mean), ¢ is a dispersion
parameter (often related to the variance), b(f) is the cumulant function
(which helps derive the mean and variance), and c(y, ¢) is a normalization
term ensuring the density integrates (or sums) to 1.
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Example 1 Gaussian distribution

The Gaussian (Normal) distribution can be written in exponential family
form as:

2 YM—H; y? 1 2
fy | n,0%) =exp T——Q—Elog(%w’)

20
where:

0=p (natural parameter)

=0 (dispersion parameter)

92
b(8) = 5 (cumulant function)
y? 1
c(y,o) = 2% 2 log(27¢) (normalization term)
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Example 2 Poisson distribution

The Poisson distribution with parameter A (rate parameter) can be written
in exponential family form as:

f(y | A) =exp(ylogA — A —log(y!))

where:
0 = log A (natural parameter)
p=1 (dispersion parameter)
b(8) = €’ (cumulant function)
c(y, p) = —log(y!) (normalization term)
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Example 3 Binomial distribution

The Binomial distribution with parameters n (number of trials) and p
(success probability) can be written in exponential family form as:

f(y | p) =exp (y log (1_pp> + nlog(1 — p) + log (;))

where:
0 = log (1 f p) (natural parameter, log-odds)
p=1 (dispersion parameter)
b(6) = nlog(1 + &%) (cumulant function)
c(y, o) = log ;) (normalization term)
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MGF of exponential family

My (t) = E[e"]

= /etyf(y | 6, ¢)dy

= /exp (ty + y(t(_;)(e) + c(y, ¢)> dy
_ /exp <y(0 +t2(0) ~b(O) | (. ¢)> dy

a(¢)
— exp (b(ﬂ + taa((a;))) - b(9)> / exp <y(9 + ta(cb)L(—qs)b(ﬂ tta(e)) <y, ¢)> dy
~ op <b(0 + ta(¢)) — b(@))
a(¢)
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Mean of the exponential family

i 0) = g [ (55—

= My(t)- % (b(9 - tz((d(;))) — b(9)> (Chain rule)

b'(0 + ta(¢)) - a(¢)
a(¢)
= My (t) - b'(6 + ta(¢))

= My (t)-

Evaluating at t = 0 (since My (0) = 1):

My (0) = b'(0) = p = E[Y]
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Variance of the exponential family

M) = 5 [My (1) B0 + ta(s))]
= Miy() - (0 + ta(9)) + My (t) - "(6 + ta($)) - a(6)
= My (t) - [(b/(0 + ta(9)))? + b"(0 + ta(9)) - a(¢)]
Evaluating at t = 0:
MY (0) = pi? + b"(0)a(¢) = E[Y?]
Thus the variance is:

Var(Y) = My(0) — [My(0)* = b"(6)a(¢)
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Link function

The second element of the generalization is that instead of modeling the
mean, as before, we will introduce a one-to-one continuous differentiable
transformation g(u;) of the mean p; = E[y;] and model that

(#I) =N = XiTB

where 7; is the linear predictor. The function g(-) is called the link function.
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Link function

Since g(+) is a one-to-one transformation, we can invert it to get the mean:
-1 ~1¢,T
pi=g () =g (x b)

Note that we do not transform the response variable y; itself, but rather the
mean of the response variable.
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Link function in R

“glm” has several options for family:

binomial (link = "logit")

gaussian(link = "identity")

Gamma(link = "inverse"

inverse.gaussian(link = "1/mu”2")

poisson(link = "log")

quasi (link = "identity", variance = "constant")
quasibinomial (link = "logit")
quasipoisson(link = "log")
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MLE

An important practical feature of generalized linear models is that they can

all be fit to data using the same algorithm, a form of iteratively re-weighted
least squares (IRLS).

Q Initialize 21 =y + ¢, 7" = g(i”)
@ While not converged:
o Working response: z; = n,(k) + (yi — “(k)) (d“)

-
o Weights: w; = {V(ﬁgk)) (2—“) ]

o Update: B0+ = (XTWX)~1XT Wz

o Update n(k+1)’ quk+1)

Jianhui Gao Module 8: Generalized linear regression July 23, 2025 15 /17



Gaussian Special Case of IRLS
For linear regression (Y ~ N(u,o?)):

e Link: Identity g(u) = u

e Variance: V(u) =1 (constant)

e Weights: w; = 1 (equal weighting)

e Working response: z; = y; (original data)

IRLS reduces to ordinary least squares:

AU — (XTX)"1XTy (single iteration)

Key observations:

o Link derivative Z—‘; =1
@ No reweighting needed (homoscedasticity)
@ Exact solution in one step
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Asymptotics

The asymptotic distribution of the MLE /3 is given by:

V(B - 8) % N, (XTWX)19)

In the case of the Gaussian distribution, ¢ is the variance 2, W is the
identity matrix, and the covariance matrix simplifies to: (X' X)™ 102
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