Module 8: Generalized linear regression

Jianhui Gao

July 23, 2025

Outline

In this module, we will review generalized linear regression.

Logistic regression

- Each response is binary: $y_i = 1, 0$
- Explanatory variables x_i^T as usual
- Model

$$P(y_i = 1 \mid x_i) = \frac{\exp\left(x_i^{\top} \beta\right)}{1 + \exp\left(x_i^{\top} \beta\right)}$$

Generalized linear models (GLMs)

- Generalized Linear Models extend the classical set-up to allow for a wider range of distributions
- GLMs have three pieces
 - **1** random component: $y_i \sim \text{some distribution with } E[y_i|\mathbf{x}_i] = \mu_i$
 - 2 systematic component: $\mathbf{x}_i^T \boldsymbol{\beta}$
 - **3** The link function that links the random and systematic components $g(u_i) = \mathbf{x}_i^T \boldsymbol{\beta}$
- Distributions of y_i comes from exponential family.

Exponential family

The random variable Y belongs to the exponential family of distributions if its support does not depend upon any unknown parameters and its density or probability mass function takes the form

$$f(y \mid \theta, \phi) = \exp\left(\frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi)\right)$$

where θ is the canonical parameter (related to the mean), ϕ is a dispersion parameter (often related to the variance), $b(\theta)$ is the cumulant function (which helps derive the mean and variance), and $c(y,\phi)$ is a normalization term ensuring the density integrates (or sums) to 1.

Example 1 Gaussian distribution

The Gaussian (Normal) distribution can be written in exponential family form as:

$$f(y \mid \mu, \sigma^2) = \exp\left(\frac{y\mu - \frac{\mu^2}{2}}{\sigma^2} - \frac{y^2}{2\sigma^2} - \frac{1}{2}\log(2\pi\sigma^2)\right)$$

where:

Example 2 Poisson distribution

The Poisson distribution with parameter λ (rate parameter) can be written in exponential family form as:

$$f(y \mid \lambda) = \exp(y \log \lambda - \lambda - \log(y!))$$

where:

$$heta = \log \lambda$$
 (natural parameter) $\phi = 1$ (dispersion parameter) $b(heta) = \mathrm{e}^{ heta}$ (cumulant function) $c(y,\phi) = -\log(y!)$ (normalization term)

Example 3 Binomial distribution

The Binomial distribution with parameters n (number of trials) and p (success probability) can be written in exponential family form as:

$$f(y \mid p) = \exp\left(y \log\left(\frac{p}{1-p}\right) + n \log(1-p) + \log\binom{n}{y}\right)$$

where:

$$\theta = \log\left(\frac{p}{1-p}\right) \qquad \qquad \text{(natural parameter, log-odds)}$$

$$\phi = 1 \qquad \qquad \text{(dispersion parameter)}$$

$$b(\theta) = n\log(1+e^{\theta}) \qquad \qquad \text{(cumulant function)}$$

$$c(y,\phi) = \log\binom{n}{y} \qquad \qquad \text{(normalization term)}$$

MGF of exponential family

$$\begin{split} M_{Y}(t) &= \mathbb{E}[e^{tY}] \\ &= \int e^{ty} f(y \mid \theta, \phi) dy \\ &= \int \exp\left(ty + \frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi)\right) dy \\ &= \int \exp\left(\frac{y(\theta + ta(\phi)) - b(\theta)}{a(\phi)} + c(y, \phi)\right) dy \\ &= \exp\left(\frac{b(\theta + ta(\phi)) - b(\theta)}{a(\phi)}\right) \int \exp\left(\frac{y(\theta + ta(\phi)) - b(\theta + ta(\phi))}{a(\phi)} + c(y, \phi)\right) dy \\ &= \exp\left(\frac{b(\theta + ta(\phi)) - b(\theta)}{a(\phi)}\right) \end{split}$$

Mean of the exponential family

$$\begin{aligned} M_Y'(t) &= \frac{d}{dt} \left[\exp\left(\frac{b(\theta + ta(\phi)) - b(\theta)}{a(\phi)}\right) \right] \\ &= M_Y(t) \cdot \frac{d}{dt} \left(\frac{b(\theta + ta(\phi)) - b(\theta)}{a(\phi)}\right) \quad \text{(Chain rule)} \\ &= M_Y(t) \cdot \frac{b'(\theta + ta(\phi)) \cdot a(\phi)}{a(\phi)} \\ &= M_Y(t) \cdot b'(\theta + ta(\phi)) \end{aligned}$$

Evaluating at t = 0 (since $M_Y(0) = 1$):

$$M'_{Y}(0) = b'(\theta) = \mu = \mathbb{E}[Y]$$

Variance of the exponential family

$$M_Y''(t) = \frac{d}{dt} \left[M_Y(t) \cdot b'(\theta + ta(\phi)) \right]$$

$$= M_Y'(t) \cdot b'(\theta + ta(\phi)) + M_Y(t) \cdot b''(\theta + ta(\phi)) \cdot a(\phi)$$

$$= M_Y(t) \cdot \left[(b'(\theta + ta(\phi)))^2 + b''(\theta + ta(\phi)) \cdot a(\phi) \right]$$

Evaluating at t = 0:

$$M_{Y}''(0) = \mu^{2} + b''(\theta)a(\phi) = \mathbb{E}[Y^{2}]$$

Thus the variance is:

$$Var(Y) = M''_Y(0) - [M'_Y(0)]^2 = b''(\theta)a(\phi)$$

Link function

The second element of the generalization is that instead of modeling the mean, as before, we will introduce a one-to-one continuous differentiable transformation $g(\mu_i)$ of the mean $\mu_i = E[y_i]$ and model that

$$(\mu_i) = \eta_i = \mathbf{x}_i^{\top} \boldsymbol{\beta}$$

where η_i is the linear predictor. The function $g(\cdot)$ is called the link function.

Link function

Since $g(\cdot)$ is a one-to-one transformation, we can invert it to get the mean:

$$\mu_i = g^{-1}(\eta_i) = g^{-1}(x_i^{\top}\beta)$$

Note that we do not transform the response variable y_i itself, but rather the mean of the response variable.

Link function in R

"glm" has several options for family:

```
binomial (link = "logit") gaussian(link = "identity") Gamma(link = "inverse") inverse.gaussian(link = "1/mu^2") poisson(link = "log") quasi (link = "identity", variance = "constant") quasipoisson(link = "logit") quasipoisson(link = "log")
```

MLE

An important practical feature of generalized linear models is that they can all be fit to data using the same algorithm, a form of iteratively re-weighted least squares (IRLS).

- $oldsymbol{1}$ Initialize $\hat{\mu}_i^{(0)}=y_i+\epsilon$, $\eta_i^{(0)}=g(\hat{\mu}_i^{(0)})$
- While not converged:
 - Working response: $z_i = \eta_i^{(k)} + (y_i \hat{\mu}_i^{(k)}) \left(\frac{d\eta}{d\mu}\right)$
 - Weights: $w_i = \left[V(\hat{\mu}_i^{(k)})\left(\frac{d\mu}{d\eta}\right)^2\right]^{-1}$
 - Update: $\beta^{(k+1)} = (X^{T}WX)^{-1}X^{T}Wz$
 - Update $\eta_i^{(k+1)}$, $\hat{\mu}_i^{(k+1)}$

Gaussian Special Case of IRLS

For linear regression $(Y \sim N(\mu, \sigma^2))$:

- **Link**: Identity $g(\mu) = \mu$
- Variance: $V(\mu) = 1$ (constant)
- Weights: $w_i = 1$ (equal weighting)
- Working response: $z_i = y_i$ (original data)

IRLS reduces to ordinary least squares:

$$\beta^{(k+1)} = (X^{\top}X)^{-1}X^{\top}y$$
 (single iteration)

Key observations:

- ullet Link derivative $rac{d\mu}{d\eta}=1$
- No reweighting needed (homoscedasticity)
- Exact solution in one step

Asymptotics

The asymptotic distribution of the MLE $\hat{\beta}$ is given by:

$$\sqrt{n}(\hat{\beta} - \beta) \xrightarrow{d} N(0, (X^{\top}WX)^{-1}\phi)$$

In the case of the Gaussian distribution, ϕ is the variance σ^2 , W is the identity matrix, and the covariance matrix simplifies to: $(X^T X)^{-1} \sigma^2$.