Solution 4: Statistical inference (I)

Jianhui Gao

July 11, 2025

Part 1: Probability distributions

Question a: A contestant on a game show needs to answer 10 questions correctly to win the jackpot. However, if they get 4 incorrect answers, they are kicked off the show. Suppose one contestant consistently has a 80% chance of correctly responding to any question.

- 1. What is the probability distribution?
- 2. What is the probability that she will correctly answer 10 questions before 4 incorrect responses?
- 3. Write out the R code to calculate (b).

Solution

- 1. The experiment is modeled by the **Negative Binomial Distribution**, as it counts the number of failures (k) before a specified number of successes (r) occurs.
 - Success: Correct answer, p = 0.8
 - Failure: Incorrect answer, q = 1 p = 0.2
 - Required successes: r = 10
 - Losing condition: k = 4 failures
- 2. The contestant wins if she achieves r=10 successes before getting 4 failures. This means the total number of failures k must be in the set $\{0,1,2,3\}$. The probability mass function is $P(X=k)=\binom{k+r-1}{r-1}p^rq^k$. The total probability of winning is the sum over the allowed values of k:

$$P(\text{Win}) = \sum_{k=0}^{3} {k+10-1 \choose 10-1} (0.8)^{10} (0.2)^{k}$$

$$P(\text{Win}) = {9 \choose 9} (0.8)^{10} (0.2)^{0} + {10 \choose 9} (0.8)^{10} (0.2)^{1} + {11 \choose 9} (0.8)^{10} (0.2)^{2} + {12 \choose 9} (0.8)^{10} (0.2)^{3}$$

$$P(\text{Win}) \approx 0.1074 + 0.2147 + 0.2362 + 0.1890 \approx 0.7473$$

- 3. The calculation can be performed concisely using R's cumulative negative binomial function, pnbinom.
- # Calculates the probability of 0, 1, 2, or 3 failures (q) # before 10 successes (size) are achieved. pnbinom(q = 3, size = 10, prob = 0.8)
- # Output: [1] 0.747323

Question b: A small town's police department issues 5 speeding tickets per month on average.

1. Using a Poisson random variable, what is the likelihood that the police department issues 3 or fewer tickets in one month?

- 2. What is the probability that 10 days or fewer elapse between two tickets being issued?
- 3. Write out the R code to calculate (a), (b).

Solution

1. First, we note that here $P(Y \le 3) = P(Y = 0) + P(Y = 1) + \cdots + P(Y = 3)$. Applying the probability mass function for a Poisson distribution with $\lambda = 5$, we find that

$$\begin{split} P(Y \leq 3) &= P(Y = 0) + P(Y = 1) + P(Y = 2) + P(Y = 3) \\ &= \frac{e^{-5}5^0}{0!} + \frac{e^{-5}5^1}{1!} + \frac{e^{-5}5^2}{2!} + \frac{e^{-5}5^3}{3!} \\ &= 0.27. \end{split}$$

```
# q is the number of events (3 or fewer).
# lambda is the average rate of events per interval.
ppois(q = 3, lambda = 5)
```

[1] 0.2650259

2. We know the town's police issue 5 tickets per month. For simplicity's sake, assume each month has 30 days. Then, the town issues $\frac{1}{6}$ tickets per day. That is $\lambda = \frac{1}{6}$, and the average wait time between tickets is $\frac{1}{1/6} = 6$ days. Therefore,

$$P(Y < 10) = \int_{0}^{10} \frac{1}{6} e^{-\frac{1}{6}y} dy = 0.81$$

pexp(10, rate = 1/6)

[1] 0.8111244

Part 2: Statistical inference

- 1. (AoS 6.6.2) Let $X_1, \ldots, X_n \sim \text{Uniform}(0, \theta)$ and let $\hat{\theta} = \max\{X_1, \ldots, X_n\}$. Find the bias, se and MSE of this estimator.
- 2. (AoS 6.6.3) Let $X_1, \ldots, X_n \sim \text{Uniform}(0, \theta)$ and let $\hat{\theta} = 2\bar{X}_n$. Find the bias, se and MSE of this estimator.
- 3. Let $X_1, \ldots, X_n \sim \text{Uniform}(0,1)$. Let $Y_n = \bar{X}_n^2$. Find the limiting distribution of Y_n . (Hint: CLT)

Solution

1. The CDF G of $\widehat{\theta}$ is

$$G(\widehat{\theta}) = \mathbb{P}(\widehat{\Theta} \le \widehat{\theta})$$

$$= \mathbb{P}\left(\max\{X_1, \dots, X_n\} \le \widehat{\theta}\right)$$

$$= \prod_{i=1}^n \mathbb{P}\left(X_i \le \widehat{\theta}\right)$$

$$= F_{\theta}(\widehat{\theta})^n$$

$$= \left(\frac{\widehat{\theta}}{\theta}\right)^n$$

The density is therefore

$$g(\widehat{\theta}) = \left(\frac{n}{\theta}\right) \left(\frac{\widehat{\theta}}{\theta}\right)^{n-1}$$

Thus,

$$\mathbb{E}_{\theta}(\widehat{\theta}) = \int_{0}^{\theta} \widehat{\theta}g(\widehat{\theta})d\widehat{\theta} = \frac{n\theta}{n+1}$$

and

bias
$$=\frac{n\theta}{n+1}-\theta=-\frac{\theta}{n+1}.$$

Also,

$$\mathbb{E}_{\theta}\left(\widehat{\theta}^{2}\right)=\int_{0}^{\theta}\widehat{\theta}^{2}g(\widehat{\theta})d\widehat{\theta}=\frac{n\theta^{2}}{n+2}$$

and so

$$\mathbb{V}_{\theta}(\widehat{\theta}) = \frac{n\theta^2}{n+2} - \left(\frac{n\theta}{n+1}\right)^2 = \frac{n\theta^2}{(n+2)(n+1)^2}$$

The mse is

$$bias^{2} + \mathbb{V} = \left(\frac{\theta}{n+1}\right)^{2} + \frac{n\theta^{2}}{(n+2)(n+1)^{2}} = \frac{2\theta^{2}}{(n+1)(n+2)}$$

2. Recall that $\mathbb{E}(X_i) = \theta/2, \mathbb{V}(X_i) = \theta^2/12$. So

$$\mathbb{E}_{\theta}(2\bar{X}) = 2\mathbb{E}_{\theta}(\bar{X}) = 2\frac{\theta}{2} = \theta$$

and hence bias = 0. Now

$$\mathbb{V}_{\theta}(2\bar{X}) = 4\mathbb{V}_{\theta}(\bar{X}) = \frac{4\sigma^2}{n} = \frac{4\theta^2}{12n} = \frac{\theta^2}{3n}.$$

Since this estimator is unbiased,

$$mse = \mathbb{V}_{\theta}(\widehat{\theta}) = \frac{\theta^2}{3n}.$$

3. $\mu = \mathbb{E}(X_i) = 1/2$ and $\sigma^2 = \mathbb{V}(X_i) = 1/12$. By the CLT,

$$\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} = \sqrt{12n}\left(\bar{X} - \frac{1}{2}\right) \rightsquigarrow N(0,1).$$

Now $Y = g(\bar{X})$ where $g(s) = s^2$. And g'(s) = 2s and $g'(\mu) = g'(1/2) = 2(1/2) = 1$. From the delta method,

$$\frac{\sqrt{n}(Y-g(\mu))}{|g'(\mu)|\,\sigma} = \sqrt{12n}\left(\bar{X}-\frac{1}{4}\right) \leadsto N(0,1)$$