Solution 8: Generalized linear regression

Jianhui Gao

July 21, 2025

Part 1: Generalized linear model

Suppose that 2500 pregnant women are enrolled in a study and the outcome is the occurrence of preterm birth. Possible predictors of preterm birth include age of the woman, smoking, socioeconomic status, body mass index, bleeding during pregnancy, serum level of dde, and several dietary factors.

- 1. Formulate the problem of selecting the important predictors of preterm birth in a generalized linear model (GLM) framework.
- 2. Show the components of the GLM, including the link function and distribution (in exponential family form).
- 3. Describe (briefly) how estimation and inference could proceed via a frequentist approach.

Solution: $y_i = 1$ if woman i has preterm birth and $y_i = 0$ otherwise (i = 1, ..., n) $y_i \sim \text{Bernoulli}(\pi_i)$ Probability density function:

$$f(y_i; \pi_i) = \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

$$= \exp \{ y_i \log \pi_i + (1 - y_i) \log (1 - \pi_i) \}$$

$$= \exp \left\{ y_i \log \left(\frac{\pi_i}{1 - \pi_i} \right) + \log (1 - \pi_i) \right\}$$

$$= \exp \left\{ \frac{y_i \theta_i - b(\theta_i)}{a(\phi)} + c(y_i, \phi) \right\}$$

where

$$\theta_i = \log\left(\frac{\pi_i}{1 - \pi_i}\right), \quad b\left(\theta_i\right) = \log\left(1 + e^{\theta_i}\right), \quad a(\phi) = \phi = 1,$$

and $c(y_i, \phi) = 0$.

Link function: Any mapping from $\Re \to [0,1]$. A convenient choice is the canonical link,

$$\eta_i = \theta_i = \log\left(\frac{\pi_i}{1 - \pi_i}\right),$$

which is the logit. The probit and complementary $\log - \log$ are alternatives. Frequentist Estimation: Maximum likelihood estimates can be obtained for a given model, say

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \mathbf{x}_i'\boldsymbol{\beta}$$

(where \mathbf{x}_i is a $p \times 1$ vector of predictors) by iterative weighted least squares

Frequentist Inference: One can select the important predictors to be included in the model by stepwise selection, using the AIC or BIC criterion.

Alternatively, one can just fit the model with all the predictors and then do inferences based on the MLEs and asymptotic standard errors. For example, for continuous predictors included as linear terms in the model, we can do a Wald test. Alternatively, we could do analysis of deviance (see notes for details) to test for significant differences in fit between the nested models with and without a particular predictor.

Part 2: GLMs in R (Logistic regression)

Consider the space shuttle data in the MASS library. Consider modeling the use of the autolander as the outcome (variable name use).

- 1. Fit a logistic regression model with autolander (variable auto) use (labeled as "auto" 1) versus not (0) as predicted by wind sign (variable wind).
- 2. Give the estimated odds ratio for autolander use comparing head winds, labeled as "head" in the variable headwind (numerator) to tail winds (denominator).
- 3. Give the estimated odds ratio for autolander use comparing head winds (numerator) to tail winds (denominator) adjusting for wind strength from the variable magn.
- 4. If you fit a logistic regression model to a binary variable, for example use of the autolander, then fit a logistic regression model for one minus the outcome (not using the autolander) what happens to the coefficients?

```
library (MASS)
?shuttle
data(shuttle)
head(shuttle)
##
    stability error sign wind
                               magn vis
## 1
        xstab
                 LX
                     pp head Light
                                    no auto
## 2
        xstab
                 LX
                     pp head Medium
                                     no auto
## 3
                 LX
        xstab
                     pp head Strong
                                     no auto
## 4
        xstab
                 LX
                     pp tail Light
                                     no auto
## 5
                 LX
                     pp tail Medium
        xstab
                                    no auto
## 6
                 LX
                     pp tail Strong no auto
        xstab
Solution
1-2.
# not wrong, but needs to be careful with the interpretation of the coefficients
fit1 <- glm(use ~ wind, family = binomial(link = logit), data = shuttle)
summary(fit1)$coefficients
##
                 Estimate Std. Error
                                       z value Pr(>|z|)
## (Intercept) -0.25131443  0.1781742 -1.4104987  0.1583925
## windtail
              shuttle$use.binary <- as.integer(shuttle$use == "auto")</pre>
fit2 <- glm(use.binary ~ wind, family = binomial(link = logit), data = shuttle)
summary(fit2)$coefficients
##
                Estimate Std. Error
                                     z value Pr(>|z|)
## (Intercept) 0.25131443 0.1781742 1.4104987 0.1583925
## windtail
              # exp(intercept + 0*coef(windtail))/exp(intercept + coef(windtail))
exp(summary(fit2)$coefficients[1, 1]) / exp(sum(summary(fit2)$coefficients[, 1]))
## [1] 0.9686888
1 / exp(summary(fit2)$coefficients[2, 1])
## [1] 0.9686888
  3.
```

```
fit3 <- glm(use.binary ~ wind + magn, family = binomial(link = logit), data = shuttle)
summary(fit3)$coefficients
##
                   Estimate Std. Error
                                             z value Pr(>|z|)
## (Intercept)
               3.635093e-01 0.2840608 1.279688e+00 0.2006547
## windtail
               3.200873e-02 0.2530225 1.265055e-01 0.8993318
## magnMedium
              -1.716525e-15
                            0.3599481 -4.768813e-15 1.0000000
## magnOut
              -3.795136e-01
                            0.3567709 -1.063746e+00 0.2874438
## magnStrong
              -6.441258e-02 0.3589560 -1.794442e-01 0.8575889
exp(summary(fit3)$coefficients[1, 1] +
 summary(fit3)$coefficients[5, 1]) /
 exp(sum(summary(fit3)$coefficients[1:2, 1]) + summary(fit3)$coefficients[5, 1])
## [1] 0.9684981
  4.
fit4 <- glm(1 - use.binary ~ wind, family = binomial(link = logit), data = shuttle)
summary(fit4)$coefficients
                 Estimate Std. Error
                                        z value Pr(>|z|)
## (Intercept) -0.25131443
                          0.1781742 -1.4104987 0.1583925
## windtail
              -0.03181183
                           0.2522429 -0.1261159 0.8996402
summary(fit2)$coefficients
                Estimate Std. Error
                                      z value Pr(>|z|)
## (Intercept) 0.25131443 0.1781742 1.4104987 0.1583925
              fit5 <- lm(use.binary ~ wind, data = shuttle)</pre>
summary(fit5)$coefficients
##
               Estimate Std. Error
                                      t value
                                                 Pr(>|t|)
## (Intercept) 0.5625000 0.04397341 12.7918204 2.973129e-29
## windtail
              0.0078125 0.06218780 0.1256275 9.001261e-01
```

Part 3: GLMs in R (Poisson regression)

Consider the insect spray data InsectSprays. Fit a Poisson model using spray as a factor level.

- 1. Report the estimated relative rate comapring spray A (numerator) to spray B (denominator).
- 2. Consider a Poisson glm with an offset, t. So, for example, a model of the form glm(count $\sim x+$ offset(t), family = poisson) where x is a factor variable comparing a treatment (1) to a control (0) and t is the natural log of a monitoring time. What is impact of the coefficient for x if we fit the model glm(count $\sim x+$ offset(t2), family = poisson) where $t2 < -\log(10) + t$? In other words, what happens to the coefficients if we change the units of the offset variable. (Note, adding $\log(10)$ on the log scale is multiplying by 10 on the original scale.)

```
data("InsectSprays")
head(InsectSprays)
```

```
## count spray
## 1 10 A
## 2 7 A
## 3 20 A
```

```
## 5
        14
              Α
## 6
        12
               Α
Solution:
# Load data and fit Poisson model
model <- glm(count ~ spray, family = poisson, data = InsectSprays)</pre>
# Extract coefficients
coefs <- coef(model)</pre>
# sprayB coefficient = log(rate_B / rate_A)
rate_ratio_B_to_A <- exp(coefs["sprayB"])</pre>
relative_rate_A_to_B <- 1 / rate_ratio_B_to_A</pre>
# Result
relative_rate_A_to_B
##
      sprayB
## 0.9456522
# Fit Poisson model with offset
t <- rep(log(10), nrow(InsectSprays)) # Example offset
model_offset <- glm(count ~ spray, offset = t, family = poisson, data = InsectSprays)</pre>
# Fit Poisson model with modified offset
t2 <- log(10) + t # Modified offset
model_offset2 <- glm(count ~ spray, offset = t2, family = poisson, data = InsectSprays)</pre>
# Compare coefficients
coefs_offset <- coef(model_offset)</pre>
coefs_offset2 <- coef(model_offset2)</pre>
# Coefficients for all
coefs_offset
## (Intercept)
                    sprayB
                                sprayC
                                            sprayD
                                                       sprayE
                                                                   sprayF
## 0.37156356 0.05588046 -1.94017947 -1.08151786 -1.42138568 0.13926207
coefs_offset2
## (Intercept)
                    sprayB
                               sprayC
                                           sprayD
                                                       sprayE
                                                                    sprayF
# The coefficients for spray A
exp(coefs_offset["(Intercept)"] + t[1])
## (Intercept)
##
          14.5
exp(coefs_offset2["(Intercept)"] + t2[1])
## (Intercept)
##
          14.5
```

4

14

Α