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Part 1: Generalized linear model

Suppose that 2500 pregnant women are enrolled in a study and the outcome is the occurrence of preterm
birth. Possible predictors of preterm birth include age of the woman, smoking, socioeconomic status, body
mass index, bleeding during pregnancy, serum level of dde, and several dietary factors.

1. Formulate the problem of selecting the important predictors of preterm birth in a generalized linear
model (GLM) framework.

2. Show the components of the GLM, including the link function and distribution (in exponential family
form).

3. Describe (briefly) how estimation and inference could proceed via a frequentist approach.

Solution: y; = 1 if woman i has preterm birth and y; = 0 otherwise (i = 1,...,n) y; ~ Bernoulli (7;)
Probability density function:
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Link function: Any mapping from ® — [0,1]. A convenient choice is the canonical link,
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which is the logit. The probit and complementary log — log are alternatives. Frequentist Estimation: Maximum
likelihood estimates can be obtained for a given model, say
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(where x; is a p x 1 vector of predictors) by iterative weighted least squares

Frequentist Inference: One can select the important predictors to be included in the model by stepwise
selection, using the AIC or BIC criterion.

Alternatively, one can just fit the model with all the predictors and then do inferences based on the MLEs
and asymptotic standard errors. For example, for continuous predictors included as linear terms in the model,
we can do a Wald test. Alternatively, we could do analysis of deviance (see notes for details) to test for
significant differences in fit between the nested models with and without a particular predictor.



Part 2: GLMs in R (Logistic regression)

Consider the space shuttle data in the MASS library. Consider modeling the use of the autolander as the
outcome (variable name use).

1. Fit a logistic regression model with autolander (variable auto) use (labeled as “auto” 1) versus not (0)
as predicted by wind sign (variable wind).

2. Give the estimated odds ratio for autolander use comparing head winds, labeled as “head” in the
variable headwind (numerator) to tail winds (denominator).

3. Give the estimated odds ratio for autolander use comparing head winds (numerator) to tail winds
(denominator) adjusting for wind strength from the variable magn.

4. If you fit a logistic regression model to a binary variable, for example use of the autolander, then fit a
logistic regression model for one minus the outcome (not using the autolander) what happens to the
coefficients?

library(MASS)
?shuttle

data(shuttle)
head (shuttle)

##  stability error sign wind magn vis use

## 1 xstab LX pp head Light no auto
## 2 xstab LX pp head Medium no auto
## 3 xstab LX pp head Strong no auto
## 4 xstab LX pp tail Light no auto
## 5 xstab LX pp tail Medium no auto
## 6 xstab LX pp tail Strong no auto
Solution

1-2.

# not wrong, but needs to be careful with the interpretation of the coefficients
fitl <- glm(use ~ wind, family = binomial(link = logit), data = shuttle)
summary (fitl) $coefficients

#it Estimate Std. Error z value Pr(>|zl)
## (Intercept) -0.25131443 0.1781742 -1.4104987 0.1583925
## windtail -0.03181183 0.2522429 -0.1261159 0.8996402
shuttle$use.binary <- as.integer(shuttle$use == "auto")

fit2 <- glm(use.binary ~ wind, family = binomial(link = logit), data = shuttle)
summary (fit2) $coefficients

#t Estimate Std. Error =z value Pr(>lzl)
## (Intercept) 0.25131443 0.1781742 1.4104987 0.1583925
## windtail 0.03181183 0.2522429 0.1261159 0.8996402

# exp(intercept + O*coef(windtail))/exp(intercept + coef(windtail))
exp (summary (fit2) $coefficients[1, 1]) / exp(sum(summary(fit2)$coefficients[, 11))

## [1] 0.9686888
1 / exp(summary(fit2)$coefficients[2, 1])

## [1] 0.9686888
3.



fit3 <- glm(use.binary ~ wind + magn, family = binomial(link = logit), data = shuttle)
summary (fit3) $coefficients

#it Estimate Std. Error z value Pr(>lzl)
## (Intercept) 3.635093e-01 0.2840608 1.279688e+00 0.2006547
## windtail 3.200873e-02 0.2530225 1.265055e-01 0.8993318
## magnMedium -1.716525e-15 0.3599481 -4.768813e-15 1.0000000
## magnOut -3.795136e-01 0.3567709 -1.063746e+00 0.2874438

## magnStrong -6.441258e-02 0.3589560 -1.794442e-01 0.8575889

exp (summary (fit3)$coefficients[1, 1] +
summary (fit3) $coefficients[5, 1]1) /
exp (sum(summary (fit3) $coefficients[1:2, 1]) + summary(fit3)$coefficients[5, 1])

## [1] 0.9684981

4.

fit4 <- glm(1l - use.binary ~ wind, family = binomial(link = logit), data = shuttle)
summary (fit4) $coefficients

#it Estimate Std. Error z value Pr(>lzl)
## (Intercept) -0.25131443 0.1781742 -1.4104987 0.1583925
## windtail -0.03181183 0.2522429 -0.1261159 0.8996402

summary (fit2) $coefficients

#it Estimate Std. Error =z value Pr(>lzl)
## (Intercept) 0.25131443 0.1781742 1.4104987 0.1583925
## windtail 0.03181183 0.2522429 0.1261159 0.8996402

fits <- 1m(use.binary ~ wind, data = shuttle)
summary (fit5) $coefficients

#t Estimate Std. Error t value Pr(>ltl)
## (Intercept) 0.5625000 0.04397341 12.7918204 2.973129e-29
## windtail 0.0078125 0.06218780 0.1256275 9.001261e-01

Part 3: GLMs in R (Poisson regression)

Consider the insect spray data InsectSprays. Fit a Poisson model using spray as a factor level.
1. Report the estimated relative rate comapring spray A (numerator) to spray B (denominator).

2. Consider a Poisson glm with an offset, t. So, for example, a model of the form glm(count ~ z+ offset(t),
family = poisson) where z is a factor variable comparing a treatment (1) to a control (0) and ¢ is the
natural log of a monitoring time. What is impact of the coefficient for x if we fit the model glm(count
~ x+ offset(t2), family = poisson) where {2 < —log(10) + ¢ ? In other words, what happens to the
coefficients if we change the units of the offset variable. (Note, adding log(10) on the log scale is
multiplying by 10 on the original scale.)

data("InsectSprays")
head (InsectSprays)

#i# count spray

## 1 10 A
## 2 7 A
## 3 20 A



## 4 14 A

## 5 14 A
## 6 12 A
Solution:

# Load data and fit Poisson model
model <- glm(count ~ spray, family = poisson, data = InsectSprays)

# Extract coefficients

coefs <- coef (model)

# sprayB coefficient = log(rate_B / rate_A)
rate_ratio_B_to_A <- exp(coefs["sprayB"])
relative_rate_A_to_B <- 1 / rate_ratio_B_to_A

# Result
relative_rate_A_to_B

#it sprayB

## 0.9456522

# Fit Poisson model with offset

t <- rep(log(10), nrow(InsectSprays)) # Ezample offset

model_offset <- glm(count ~ spray, offset = t, family = poisson, data = InsectSprays)

# Fit Poisson model with modified offset
t2 <- 1log(10) + t # Modified offset
model_offset2 <- glm(count ~ spray, offset = t2, family = poisson, data = InsectSprays)

# Compare coefficients

coefs_offset <- coef(model_offset)
coefs_offset2 <- coef(model_ offset2)
# Coefficients for all

coefs_offset

## (Intercept) sprayB sprayC sprayD sprayE sprayF
## 0.37156356 0.05588046 -1.94017947 -1.08151786 -1.42138568 0.13926207

coefs_offset2

## (Intercept) sprayB sprayC sprayD sprayE sprayF
## -1.93102154 0.05588046 -1.94017947 -1.08151786 -1.42138568 0.13926207

# The coefficients for spray A
exp(coefs_offset[" (Intercept)"] + t[1])

## (Intercept)
## 14.5

exp(coefs_offset2[" (Intercept)"] + t2[1])

## (Intercept)
## 14.5
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