Module 1: Proofs Operational math bootcamp

Emma Kroell

University of Toronto

July 11, 2022

Outline

- Logic
- Review of Proof Techniques
- Introduction to Set Theory

Propositional logic

Propositions are statements that could be true or false. They have a corresponding **truth value**.

ex. "*n* is odd" and "*n* is divisible by 2" are propositions . Let's call them *P* and *Q*. Whether they are true or not depends on what *n* is.

We can negate statements: $\neg P$ is the statement "*n* is not odd"

Examples

Symbol	Meaning
capital letters	propositions
\implies	implies
\wedge	and
\vee	inclusive or
_	not

- If it's not raining, I won't bring my umbrella.
 - C√D
 L'm a banana or Toronto is in Canada.
 If I pass this exam, I'll be both happy
 - and surprised. $\mathcal{P} = \mathcal{Q} \wedge \mathcal{R}$

Truth values

Example

If it is snowing, then it is cold out. It is snowing. Therefore, it is cold out.

Write this using propositional logic:

How do we know if this statement is true or not?

Truth table

If it is snowing, then it is cold out.

When is this true or false?

P	Q	$P \implies Q$
Т	Т	
Т	F	Ł
F	Т	7
F	F	τ

Logical equivalence

What is
$$\neg (P \implies Q)$$
?
 $P \land \neg Q$

Statistical Sciences UNIVERSITY OF TORONTO

Quantifiers

For all

"for all", \forall , is also called the universal quantifier.

If P(x) is some property that applies to x from some domain, then $\forall xP(x)$ means that the property P holds for every x in the domain.

"Every real number has a non-negative square." We write this as

How do we prove a for all statement?

Quantifiers

There exists

"there exists", \exists , is also called the existential quantifier.

If P(x) is some property that applies to x from some domain, then $\exists x P(x)$ means that the property P holds for some x in the domain.

4 has a square root in the reals. We write this as

$$\exists x \in \mathbb{R}, x^a = 4$$

How do we prove a there exists statement?

 $M = \xi_{1,a_{1,3,\dots}}, M_{o} = \xi_{0,1,\dots}, \frac{\zeta_{1,\dots}}{\zeta_{1,\dots}}$

1

9/30

There is also a special way of writing when there exists a unique element: $\exists !$. For example, we write the statement "there exists a unique positive integer square root of 64" as $\exists V \in N \leq 10^{-5} \leq 10^{-5}$

Statistical Sciences UNIVERSITY OF TORONTO

Combining quantifiers

Often we will need to prove statements where we combine quantifiers. Here are some examples:

Q:rationals Statement Logical expression Every non-zero rational number has a YGED/603 ESED S.L. 95=1 multiplicative inverse Each integer has a unique additive in-VXEZ J!YEB s.t X+y=0 verse HESO ZSOSL. K-XOLLS $f: \mathbb{R} \to \mathbb{R}$ is continuous at $x_0 \in \mathbb{R}$ -> (f(x)-f(x))/2E

Quantifier order & negation

The order of quantifiers is important! Changing the order changes the meaning. Consider the following example. Which are true? Which are false?

$$\forall x \in \mathbb{R} \forall y \in \mathbb{R} x + y = 2 \forall x \in \mathbb{R} \exists y \in \mathbb{R} x + y = 2 \exists x \in \mathbb{R} \forall y \in \mathbb{R} x + y = 2 \exists x \in \mathbb{R} \exists y \in \mathbb{R} x + y = 2$$

Negating quantifiers:

$$\neg \forall x P(x) = \exists x (\neg P(x))$$

 $\neg \exists x P(x) = \forall x (\neg P(x))$

The negations of the statements above are: (Note that we use De Morgan's laws, which are in your exercises: $\neg(P \land Q) = \neg P \lor \neg Q$ and $\neg(P \lor Q) = \neg P \land \neg Q$.)

Logical expressionNegation
$$\forall q \in \mathbb{Q} \setminus \{0\}, \exists s \in \mathbb{Q} \text{ such that } qs = 1$$
 $\exists q \in \mathbb{Q} \setminus \{c\} \ s.t. \ \forall s \in \mathbb{Q}, qs \neq j$

$$\forall x \in \mathbb{Z}, \exists ! y \in \mathbb{Z} \text{ such that } x + y = 0$$

 $orall \epsilon > 0 \ \exists \delta > 0$ such that whenever $|x - x_0| < \delta$, $|f(x) - f(x_0)| < \epsilon$

What do these mean in English?

Types of proof

- Direct
- Contradiction
- Contrapositive
- Induction

Direct Proof

Approach: Use the definition and known results.

Example

Claim

The product of an even number with another integer is even.

Approach: use the definition of even.

Direct Proof

Claim

The product of an even number with another integer is even.

Definition

We say that an integer *n* is **even** if there exists another integer *j* such that n = 2j. We say that an integer *n* is **odd** if there exists another integer *j* such that n = 2j + 1.

Proof.

Definition

Let $a, b \in \mathbb{Z}$. We say that "a divides b", written a|b, if the remainder is zero when b is divided by a, i.e. $\exists j \in \mathbb{Z}$ such that b = aj.

Example

Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$. Prove that if a|b and b|c, then a|c.

Proof.	
ever ciece	

Claim

If an integer squared is even, then the integer is itself even.

How would you approach this proof?

Proof by contrapositive

Ρ	Q	$\neg P$	$\neg Q$	$\neg Q \implies \neg P$
Т	Т	F	F	Т
Т	F	F	Т	-t
F	Т	Т	F	·F
F	F	Т	Т	T

Proof by contrapositive

Proof by contradiction

Claim

The sum of a rational number and an irrational number is irrational.

Proof.

Summary

In sum, to prove $P \implies Q$:

Direct proof:assume P, prove QProof by contrapositive:assume $\neg Q$, prove $\neg P$ Proof by contradiction:assume $P \land \neg Q$ and derive something that is impossible

Induction

Well-ordering principle for $\ensuremath{\mathbb{N}}$

Every nonempty set of natural numbers has a least element.

Principle of mathematical induction

Let n_0 be a non-negative integer. Suppose P is a property such that

(base case) $P(n_0)$ is true

2 (induction step) For every integer $k \ge n_0$, if P(k) is true, then P(k+1) is true.

Then P(n) is true for every integer $n \ge n_0$

Note: Principle of strong mathematical induction: For every integer $k \ge n_0$, if P(n) is true for every $n = n_0, \ldots, k$, then P(k + 1) is true.

Claim

 $n! > 2^n$ if $n \ge 4$. $\mathcal{N} \in \mathbb{N}$

Proof.

We prove this by induction on n.
Base case:
$$n=4$$
 $n! = 24 > 16 = 24$
Inductive hypothesis: suppose for some $k \ge 4$, $k! > 2^{k}$.
 $(k+1)! = (k+1)(k!) > (k+1)2^{k} > 2 \cdot 2^{k} = 2^{k+1}$
Thus the statement holds > 2
by induction.

Claim

Every integer $n \ge 2$ can be written as the product of primes.

Proof.

References

Gerstein, Larry J. (2012). *Introduction to Mathematical Structures and Proofs*. Undergraduate Texts in Mathematics. url: https://link.springer.com/book/10.1007/978-1-4614-4265-3

Lakins, Tamara J. (2016). *The Tools of Mathematical Reasoning*. Pure and Applied Undergraduate Texts.

