Module 1: Proofs

Operational math bootcamp

Statistical Sciences

UNIVERSITY OF TORONTO

Emma Kroell
University of Toronto
July 11, 2022

Outline

- Logic
- Review of Proof Techniques
- Introduction to Set Theory

Propositional logic

Propositions are statements that could be true or false. They have a corresponding truth value.

Q
ex. " n is odd" and " n is divisible by 2 " are propositions. Let's call them P and Q. Whether they are true or not depends on what n is.

We can negate statements: $\neg P$ is the statement " n is not odd"
We can combine statements:
and $P P \wedge Q$ is the statement:

- $P \vee Q$ is the statement: n is odd or n is divisithe We always assume the inclusive or unless specifically stated otherwise.

Examples

Symbol	Meaning
capital letters	propositions
\Longrightarrow	implies
\wedge	and
\vee	inclusive or
\neg	not

A: it's raining
$B:$ I bring my umbrella
B: I bring my umbrella

* - If it's not raining, I wont bring my umbrella.

- I'm a banana or Toronto is in Canada.
- If I pass this exam, Ill be both happy and surprised.

$$
P \Rightarrow Q \wedge R
$$

$$
\neg A \Rightarrow \neg B
$$

Truth values

Example

If it is snowing, then it is cold out.
It is snowing.
Therefore, it is cold out.
Write this using propositional logic:

How do we know if this statement is true or not?

Truth table

$$
P \Longrightarrow Q
$$

If it is snowing, then it is cold out.

When is this true or false?

P	Q	$P \Longrightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

Logical equivalence

$$
P \Longrightarrow Q
$$

$$
\neg P \vee Q
$$

P	Q	$P \Longrightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

P	Q	$\neg P$	$\neg P \vee Q$
T	T	F	T
T	F	F	F
F	T	T	T
F	F	T	T

$$
\begin{aligned}
& \text { What is } \neg(P \Longrightarrow Q) \text { ? } \\
& \qquad P \wedge \neg Q
\end{aligned}
$$

Quantifiers

For all

"for all", \forall, is also called the universal quantifier.
If $P(x)$ is some property that applies to x from some domain, then $\forall x P(x)$ means that the property P holds for every x in the domain.
"Every real number has a non-negative square." We write this as

$$
\forall x \in \mathbb{R}, \quad x^{2} \geq 0
$$

How do we prove a for all statement?

$$
\text { Take } x \text { in the domain arbitrary. }
$$

Quantifiers
There exists
"there exists", \exists, is also called the existential quantifier.
If $P(x)$ is some property that applies to x from some domain, then $\exists x P(x)$ means that the property P holds for some x in the domain.

4 has a square root in the reals. We write this as

$$
\exists x \in \mathbb{R}, \quad x^{2}=4
$$

How do we prove a there exists statement?
Find ore, ie. find x in domain s.t. Phis true
There is also a special way of writing when there exists a unique element: \exists !.
For example, we write the statement "there exists a unique positive integer square root of 64" as

$$
\begin{aligned}
& \exists!x \in \mathbb{N} s . t, x^{2}=64 \\
& \mathbb{N}=\{1,2,3, \ldots\} . \mathbb{N}_{0}=\{0,1, \ldots\}_{1111,2022} \\
& 9 / 30
\end{aligned}
$$

郎

Combining quantifiers

Often we will need to prove statements where we combine quantifiers. Here are some examples:
$\begin{array}{lll}\text { Statement } & \mathbb{Q}: \text { rationals } & \text { Logical expression } \\ \begin{array}{l}\text { Every non-zero rational number has a } \\ \text { multiplicative inverse }\end{array} & \forall q \in \mathbb{D} \backslash\{0\} \quad \exists s \in \mathbb{Q} \text { st. } q s=1\end{array}$
Each integer has a unique additive inverse
$\forall x \in \mathbb{Z} \exists!y \in B$ s.t $x+y=0$
$f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x_{0} \in \mathbb{R} \notin \quad \forall \varepsilon>0 \exists \delta>0$ s.t. $\left|x-x_{0}\right|<\delta$
$\Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$

Quantifier order \& negation

The order of quantifiers is important! Changing the order changes the meaning. Consider the following example. Which are true? Which are false?

$$
\begin{aligned}
& \forall x \in \mathbb{R} \forall y \in \mathbb{R} x+y=2 \\
& \forall x \in \mathbb{R} \exists y \in \mathbb{R} x+y=2 \\
& \exists x \in \mathbb{R} \forall y \in \mathbb{R} x+y=2 \\
& \exists x \in \mathbb{R} \exists y \in \mathbb{R} x+y=2
\end{aligned}
$$

Negating quantifiers:

$$
\begin{aligned}
\neg \forall x P(x) & =\exists x(\neg P(x)) \\
\neg \exists x P(x) & =\forall x(\neg P(x))
\end{aligned}
$$

The negations of the statements above are:
(Note that we use De Morgan's laws, which are in your exercises:

$$
\neg(P \wedge Q)=\neg P \vee \neg Q \text { and } \neg(P \vee Q)=\neg P \wedge \neg Q .)
$$

$$
\begin{array}{ll}
\text { Logical expression } & \text { Negation } \\
\hline \forall q \in \mathbb{Q} \backslash\{0\}, \exists s \in \mathbb{Q} \text { such that } q s=1 & \left.\exists q \in \mathbb{Q} \backslash\{0\} \text { s.t. } \forall s \in \mathbb{Q} q_{s} \neq\right] \\
\forall x \in \mathbb{Z}, \exists!y \in \mathbb{Z} \text { such that } x+y=0 & \exists x \in \mathbb{Z}(\forall y \in Z, x+y \neq 0) \vee \\
& \left(\exists y_{1}, y_{2} y_{1} \neq y_{2} x+y_{1}=0\right. \\
\forall \epsilon>0 \exists \delta>0 \text { such that whenever } \mid x- & \exists \varepsilon>0 \forall \delta>0, \forall \delta>0 \quad \mid x-x_{0} l<\delta \wedge \\
x_{0}\left|<\delta,\left|f(x)-f\left(x_{0}\right)\right|<\epsilon\right. & \left|f(x)-f\left(x_{0}\right)\right| \geq \varepsilon
\end{array}
$$

Types of proof

- Direct
- Contradiction
- Contrapositive
- Induction

Direct Proof

Approach: Use the definition and known results.

Example

Claim

The product of an even number with another integer is even.

Approach: use the definition of even.

Direct Proof

Claim
The product of an even number with another integer is even.
Definition
We say that an integer n is even if there exists another integer j such that $n=2 j$.
We say that an integer n is odd if there exists another integer j such that $n=2 j+1$.
Proof.
Let $n, m \in \mathbb{Z}$. Assume n is even. By definition, it means $\exists j \in \mathbb{Z}$ s. $.7 . \quad n=2 j$.

$$
\left.\begin{array}{l}
\exists j \in \mathbb{Z} \text { s. } \lambda . \quad n=2 j . \\
\text { Then } m n=m 2 j=2(m j) \in \mathbb{Z}
\end{array}\right\}
$$

Definition

Let $a, b \in \mathbb{Z}$. We say that "a divides b ", written $a \mid b$, if the remainder is zero when b is divided by a, i.e. $\exists j \in \mathbb{Z}$ such that $b=a j$.

Example

Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$. Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof.

exercise

Claim

If an integer squared is even, then the integer is itself even.

How would you approach this proof?

Proof by contrapositive

$$
P \Longrightarrow Q
$$

$$
\neg Q \Longrightarrow \neg P
$$

P	Q	$P \Longrightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

P	Q	$\neg P$	$\neg Q$	$\neg Q \Longrightarrow \neg P$
T	T	F	F	T
T	F	F	T	F
F	T	T	F	T
F	F	T	T	T

Proof by contrapositive

Claim
If an integer squared is even, then the integer is itself even.
integer is odd \Rightarrow integer squared is odd
Proof.
We prove the contrapositive.
Let $n \in \mathbb{Z}$ sit. $n=2 k+1$ for some $k \in B$.

$$
\begin{aligned}
\Rightarrow n^{2}=(2 k+1)^{2} & =4 k^{2}+4 k+1 \\
& =2\left(2 k^{2}+2 k\right)+1
\end{aligned}
$$

$\therefore n^{2}$ is odd by definition. $\in \mathbb{Z}$

Proof by contradiction

Claim
The sum of a rational number and an irrational number is irrational.
Proof.
Let $q \in \mathbb{R}$ and $r \in \mathbb{R} \backslash \mathbb{R}$. Suppose in order to derive a contradiction, that

$$
q+r=s, \quad s \in \mathbb{Q}
$$

$$
\begin{aligned}
\Rightarrow r & =s-q . \text { We know that } s-q \in \mathbb{Q} . \\
& \Rightarrow \stackrel{L}{\epsilon} \\
& \Rightarrow s \in \mathbb{R} \backslash \mathbb{Q}
\end{aligned}
$$

Summary

In sum, to prove $P \Longrightarrow Q$:
Direct proof: assume P, prove Q
Proof by contrapositive: assume $\neg Q$, prove $\neg P$
Proof by contradiction: assume $P \wedge \neg Q$ and derive something that is impossible

Induction

Well-ordering principle for \mathbb{N}

Every nonempty set of natural numbers has a least element.

Principle of mathematical induction

Let n_{0} be a non-negative integer. Suppose P is a property such that
(1) (base case) $P\left(n_{0}\right)$ is true
(2) (induction step) For every integer $k \geq n_{0}$, if $P(k)$ is true, then $P(k+1)$ is true.

Then $P(n)$ is true for every integer $n \geq n_{0}$
Note: Principle of strong mathematical induction: For every integer $k \geq n_{0}$, if $P(n)$ is true for every $n=n_{0}, \ldots, k$, then $P(k+1)$ is true.

Proof.
We prove this by induction on n.
Base case: $n=4 \quad n!=24>16=24$
Inductive hypothesis: suppose for some $k \geq 4, k l>a^{k}$.

$$
(k+1)!=(k+1)(k!)>(k+1) 2^{k}>2 \cdot 2^{k}=2^{k+1}
$$

thus the statement holds >2 by induction.

Every integer $n \geq 2$ can be written as the product of primes.
Proof.
We prove this by induction on n.
Base case: $n=2$. 2 is prime
Inductive hypothesis:
suppose for $K \geq 2$, we can write an $n \in Z$ with $2 \leqslant n \leqslant k$ Inductive step: as the product of primes.

We must show we can write $k+l$ as product of primes.
If $k+1$ is prime, we are dree.
If $k+l$ is not prime, $k+1=a b$ for some a, b with Using the inductive hyp, we are dove. $1<a, b<k+$)

References

Gerstein, Larry J. (2012). Introduction to Mathematical Structures and Proofs.
Undergraduate Texts in Mathematics. url: https://link.springer.com/book/10.1007/978-1-4614-4265-3

Lakins, Tamara J. (2016). The Tools of Mathematical Reasoning. Pure and Applied Undergraduate Texts.

