Module 2: Set Theory

Operational math bootcamp

Statistical Sciences

UNIVERSITY OF TORONTO

Emma Kroell
University of Toronto

July 13, 2022

Outline

- Review of basic set theory
- Ordered Sets
- Functions
- Cardinality

Introduction to Set Theory

- We define a set to be a collection of mathematical objects.
- If S is a set and x is one of the objects in the set, we say x is an element of S and denote it by $x \in S$.
- The set of no elements is called empty set and is denoted by \emptyset.

Definition (Subsets, Union, Intersection)

Let S, T be sets.

- We say that S is a subset of T, denoted $S \subseteq T$, if $s \in S$ implies $s \in T$.
- We say that $S=T$ if $S \subseteq T$ and $T \subseteq S$.
- We define the union of S and T, denoted $S \cup T$, as all the elements that are in either S or T.
- We define the intersection of S and T, denoted $S \cap T$, as all the elements that are in both S and T.
- We say that S and T are disjoint if $S \cap T=\emptyset$.

Some examples

Example

$\mathbb{N} \subseteq \mathbb{N}_{0} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$

Example

Let $a, b \in \mathbb{R}$ such that $a<b$.
Open interval: $(a, b):=\{x \in \mathbb{R}: a<x<b\}(a, b$ may be $-\infty$ or $+\infty)$
Closed interval: $[a, b]:=\{x \in \mathbb{R}: a \leq x \leq b\}$
We can also define half-open intervals.

Example
Let $A=\{x \in \mathbb{N}: 3 \mid x\}$ and $B=\{x \in \mathbb{N}: 6 \mid x\}$ Show that $B \subseteq A$.
Proof.
Let $x \in B$. Then $6 l x$, so $\exists k \in \mathbb{R}$ s.t. $x=6 k$. Then $x=3(2 k)$ so $31 x$. Thus $x \in \mathbb{A}$.

Difference of sets

Definition

Let $A, B \subseteq X$. We define the set-theoretic difference of A and B, denoted $A \backslash B$ (sometimes $A-B$) as the elements of X that are in A but not in B.
The complement of a set $A \subseteq X$ is the set $A^{c}:=X \backslash A$.

Example

Let $X \subseteq \mathbb{R}$ be defined as $X=\{x \in \mathbb{R}: 0<x \leq 40\}=(0,40]$. Then $X^{c}=\{x \in \mathbb{R}: x \leq 0$ or $x>40\}=(-\infty, 0] \cup(40, \infty)$.

Recall that for sets S, T :

- the union of S and T, denoted $S \cup T$, is all the elements that are in either S and T
- and the intersection of S and T, denoted $S \cap T$, is all the elements that are in both S and T.

We extend the definition of union and intersection to an arbitrary family of sets as follows:

Definition

Let $S_{\alpha}, \alpha \in A$, be a family of sets. A is called the index set. We define

$$
\begin{aligned}
& \bigcup_{\alpha \in A} S_{\alpha}:=\left\{x: \exists \alpha \text { such that } x \in S_{\alpha}\right\}, \\
& \bigcap_{\alpha \in A} S_{\alpha}:=\left\{x: x \in S_{\alpha} \text { for all } \alpha \in A\right\} .
\end{aligned}
$$

Example

$$
\begin{aligned}
& \bigcup_{n=1}^{n} \mid[-n, n]=\mathbb{R} \\
& \prod_{n=1}^{n}\left(-\frac{1}{n}, \frac{1}{n}\right)=\{0\}
\end{aligned}
$$

Theorem (De Morgan's Laws)
Let $\left\{S_{\alpha}\right\}_{\alpha \in A}$ be an arbitrary collection of sets. Then

$$
\underbrace{\left(\bigcup_{\alpha \in A} S_{\alpha}\right)^{c}=\bigcap_{\alpha \in A} S_{\alpha}^{c}}_{\theta} \text { and }\left(\bigcap_{\alpha \in A} S_{\alpha}\right)^{c}=\bigcup_{\alpha \in A} S_{\alpha}^{c}
$$

Proof.
(1) Let $x \in\left(\bigcup_{\alpha \in A} S_{\alpha}\right)^{c}$. This is the if and only if

$$
\begin{gathered}
x \notin \bigcup_{\alpha \in A} S_{\alpha} \rightleftarrows x \in S_{\alpha}^{c} \forall \alpha \in A \\
\end{gathered}
$$

Proof of (2): exercise

Since a set is itself a mathematical object, a set can itself contain sets.
Definition
The power set $\mathcal{P}(S)$ of a set S is the set of all subsets of S.

Example
Let $S=\{a, b, c\}$.
Then $\mathcal{P}(S)=\{\phi,\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\}$,

$$
\left.\left\{a_{1} b_{L} c\right\}\right\}
$$

$$
2^{n}
$$

Another way of building a new set from two old ones is the Cartesian product of two sets.

Definition

Let S, T be sets. The Cartesian product $S \times T$ is defined as the set of tuples with elements from S, T, i.e

$$
S \times T=\{(s, t): s \in S \text { and } t \in T\}
$$

This can also be extended inductively to a finite family of sets.

Ordered set

Definition

A relation R on a set X is a subset of $X \times X$. A relation \leq is called a partial order on X if it satisfies
(1) reflexivity: $x \leqslant x \quad \forall x \in X$
(2) transitivity: $x, y, z \in X, x \leq y \& y \leq z \leq z$
(3) anti-symmetry: $x, y \in X$, then $x \leqslant y$ and $y \leqslant x \Rightarrow x=y$

A chain or totally ordered set $C \subseteq X$ is a subset with the property $x \leq y$ or $y \leq x$ for any $x, y \in C$.

Example

The real numbers with the usual ordering, (\mathbb{R}, \leq) are totally ordered.

Example

The power set of a set X with the ordering given by subsets, $(\mathcal{P}(X), \subseteq)$ is partially ordered set.

Example

Let $X=\{a, b, c, d\}$. What is $\mathcal{P}(X)$? Find a chain in $\mathcal{P}(X)$.

Example
Let $X=\{a, b, c, d\}$. What is $\mathcal{P}(X)$? Find a chain in $\mathcal{P}(X)$.

$$
\begin{aligned}
& \mathcal{P}(X)=\{\emptyset,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{b, c\},\{c, d\},\{b, d\},\{a, c\},\{a, d\},\{a, b, c\}, \\
& \{b, c, d\},\{a, b, d\},\{a, c, d\}, X\} \\
& \subset=\left\{\phi,\{a\},\left\{a_{v} b\right\},\{a, b, c\}, X\right\}
\end{aligned}
$$

Example

Consider the set $C([0,1], \mathbb{R}):=\{f:[0,1] \rightarrow \mathbb{R}: f$ is continuous $\}$.
For two functions $f, g \in C([0,1], \mathbb{R})$, we define the ordering as $f \leq g$ if $f(x) \leq g(x)$ for $x \in[0,1]$. Then $(C([0,1], \mathbb{R}), \leq)$ is a partially ordered set.

Can you think of a chain that is a subset of $(C([0,1], \mathbb{R})$?

Definition

A non-empty partially ordered set (X, \leq) is well-ordered if every non-empty subset $A \subseteq X$ has a mimimum element.

Definition

Let (X, \leq) be a partially ordered set and $S \subseteq X$. Then $x \in X$ is an upper bound for S if for all $s \in S$ we have $\& \leq$ Similarly $y \in X$ is a lower bound for S if for all $s \in S$, $y \leq s$. If there exists an upper bound for S, we call S bounded above and if there exists a lower bound for S, we call S bounded below. If S is bounded above and bounded below, we say S is bounded.

We can also ask if there exists a least upper bound or a greatest lower bound.

Definition

Let (X, \leq) be a partially ordered set and $S \subseteq X$. We call $x \in X$ least upper bound or supremum, denoted $x=\sup S$, if x is an upper bound and for any other upper bound $y \in X$ of S we have $x \leq y$. Likewise $x \in X$ is the greatest lower bound or infimum for S, denoted $x=\inf S$, if it is a lower bound and for any other lower bound $y \in X$, $y \leq x$.

Note that the supremum and infimum of a bounded set do not necessarily need to exist. However, if they do exists they are unique, which justifies the article the (exercise). Nevertheless, the reals have a remarkable property, which we will take as an axiom.

Completeness Axiom

Let $S \subseteq \mathbb{R}$ be bounded above. Then there exists $r \in \mathbb{R}$ such that $r=\sup S$, i.e. S has a least upper bound.

By setting $S^{\prime}=-S:=\{-s: s \in S\}$ and noting $\inf S=-\sup S^{\prime}$, we obtain a similar statement for infima if S is bounded below. As mentioned above, this property is fairly special, for example it fails for the rationals.

Example

Let $S=\left\{q \in \mathbb{Q}: x^{2}<7\right\}$. Then S is bounded above in \mathbb{Q}, but there exists no least upper bound in \mathbb{Q}.

There is a nice alternative characterization for suprema in the real numbers.
Proposition
Let $S \subseteq \mathbb{R}$ be bounded above. Then $r=\sup S$ if and only if r is an upper bound and for all $\epsilon>0$ there exists an $s \in S$ such that $r-\epsilon<s$.

Proof.
(\Rightarrow) We prove the contrapositive.
Suppose r is either not an upper bound or $\exists \varepsilon>0$ sit. $\forall s \in S$, $r-\varepsilon \geq s$.
In the first case, r cannot be the sup, r sups. In the second case, $r-\varepsilon$ is an upper bound for S and $r-\varepsilon<r$, so $r \neq$ sup s.
离 \qquad

Proof.
(\Leftarrow) By contradiction.
Suppose r is an upper bound for S and $\forall \varepsilon>0$ $\exists s \in S$ s.t. $r-\varepsilon<S$ but $r \neq$ sups

$$
\Rightarrow r>\sup S \quad \epsilon \quad r-\sup S>0
$$

Then by assumption $C i n$ blue), $\exists s \in S$ s.t.

$$
r-j(r-\sup S)=\sup S^{\prime}<S . \Rightarrow \ldots r=\sup S
$$

Using the same trick, we may obtain a similar result for infima.

Example
Consider $S=\{1 / n: n \in \mathbb{N}\}$. Then $\sup S=1$ and $\inf S=0$.

要

Functions

Definition

A function f from a set X to a set Y is a subset of $X \times Y$ with the properties:
(1) For every $x \in X$, there exists a $y \in Y$ such that $(x, y) \in f$
(2) If $(x, y) \in f$ and $(x, z) \in f$, then $y=z$.
X is called the domain of f.
How does this connect to other descriptions of functions you may have seen?

$$
f: x \rightarrow Y \quad x \mapsto y \text { where }(x, y) \in f
$$

Example

For a set X, the identity function is:

$$
1_{X}: X \rightarrow X, \quad x \mapsto x
$$

Definition (Image and pre-image)

Let $f: X \rightarrow Y$ and $A \subseteq X$ and $B \subseteq Y$.

- The image of f is the set $f(A):=\{f(x): x \in A\}$.
- The pre-image of f is the set $f^{-1}(B):=\{x: f(x) \in B\}$.

Helpful way to think about it for proofs:
If $y \in f(A)$, then $y \in Y$, and there exists an $x \in A$ such that $y=f(x)$. If $x \in f^{-1}(B)$, then $x \in X$ and $f(x) \in B$.

Definition (Surjective, injective and bijective)

Let $f: X \rightarrow Y$, where X and Y are sets. Then

- f is injective if $x_{1} \neq x_{2}$ implies $f\left(x_{1}\right) \neq f\left(x_{2}\right)$
- f is surjective if for every $y \in Y$, there exists an $x \in X$ such that $y=f(x)$
- f is bijective if it is both injective and bijective

Example

Let $f: X \rightarrow Y, x \mapsto x^{2}$.
f is surjective if $X=\mathbb{R}, Y=[0, \infty)$
f is injective if $\quad X=[0, \infty) \quad Y=\mathbb{R}$
f is bijective if $\quad X=[0, \infty)=Y$
f is neither surjective nor injective if $\quad Y=X=\mathbb{R}$

Proposition
Let $f: X \rightarrow Y$ and $A \subseteq X$. Prove that $A \subseteq f^{-1}(f(A))$, with equality jiff f is infective. if f is injective, $A=f^{-1}(f(A))$
Proof.
First, we show $A \subseteq f^{-1}(f(A))$. Let $x \in A$.
Let $B=f(A) . B \subseteq Y$. By definition, $f(x) \in B$. Again using the definition, $x \in f^{\prime \prime}(B)$.

$$
\therefore V_{x \in-1}(f(A)) \text {. }
$$

Now suppose f is injective. We want to show $f^{-1}(f(A)) \subseteq A$. Let $x \in f^{-1}(f(A))$. By de f, $f(x) \in f(A)$. By definition, $\exists \tilde{x} \in A$ s.t. $f(x)=f(\widetilde{x})$. Since f is injective, $x=\widetilde{x}$.

Cardinality

Intuitively, the cardinality of a set A, denoted $|A|$, is the number of elements in the set. For sets with only a finite number of elements, this intuition is correct. We call a set with finitely many elements finite.

We say that the empty set has cardinality 0 and is finite.

Proposition
4 If X is finite set of cardinality n, then the cardinality of $\mathcal{P}(X)$ is 2^{n}.
Proof.
We prove this by induction on n. (Note: could also prove without Base case: $n=0$ (i.e. $X=\varnothing$).

Then $\mathbb{P}(x)=\{\phi\}$, so $P(x)$ has cardinality $1=2^{\circ}$. The statement holds for $n=0$.
Inductive hypothesis: suppose the statement) * holds for some $n \in \mathbb{N}_{0}$.

億 \qquad

Proof.
continued. Let X have $n+1$ elements. Let's call them $\left.\mathcal{E} x_{1}, x_{2}, \ldots, x_{n}, x_{n \rightarrow 1}\right\}$. We can split x into 2 subsets $A=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $B=\left\{x_{n+1}\right\}$. By the inductive hypothesis, $P(A)$ has cardinality 2^{n}.
Any subset of x must eithor be a subset of A or contain x_{n+1}. We count the ores of the latter form. We take elements of A and combine with x_{n+1}.
Count them:

$$
\begin{aligned}
& 1+\binom{n}{1}^{n}+\binom{n}{2}+\cdots+\binom{n}{n-1}+\binom{n}{n} \\
& =\sum_{k=0}^{n}\binom{n}{k}=2^{n}
\end{aligned}
$$

References Therefore, the total number of elements in $P(x)$ is $2^{n}+2^{n}=2^{n+1}$.

Thus the claim holds by induction.
Marcoux, Laurent W. (2019). PMATH 351 Notes. url: https://www.math. uwaterloo.ca/ Iwmarcou/notes/pmath351.pdf

Rude ,Volker (2005). A Taste of Topology. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Zwiernik, Piotr (2022). Lecture notes in Mathematics for Economics and Statistics. url: http://84.89.132.1/ piotr/docs/RealAnalysisNotes.pdf

