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Introduction to Set Theory

• We define a set to be a collection of mathematical objects.

• If S is a set and x is one of the objects in the set, we say x is an element of S and
denote it by x 2 S .

• The set of no elements is called empty set and is denoted by ;.
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Definition (Subsets, Union, Intersection)

Let S ,T be sets.

• We say that S is a subset of T , denoted S ✓ T , if s 2 S implies s 2 T .

• We say that S = T if S ✓ T and T ✓ S .

• We define the union of S and T , denoted S [ T , as all the elements that are in
either S or T .

• We define the intersection of S and T , denoted S \ T , as all the elements that
are in both S and T .

• We say that S and T are disjoint if S \ T = ;.
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Some examples

Example

N ✓ N0 ✓ Z ✓ Q ✓ R ✓ C

Example

Let a, b 2 R such that a < b.
Open interval: (a, b) := {x 2 R : a < x < b} (a, b may be �1 or +1)
Closed interval: [a, b] := {x 2 R : a  x  b}
We can also define half-open intervals.
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Example

Let A = {x 2 N : 3|x} and B = {x 2 N : 6|x} Show that B ✓ A.

Proof.
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Di↵erence of sets

Definition

Let A,B ✓ X . We define the set-theoretic di↵erence of A and B , denoted A \ B
(sometimes A� B) as the elements of X that are in A but not in B .
The complement of a set A ✓ X is the set Ac := X \ A.

Example

Let X ✓ R be defined as X = {x 2 R : 0 < x  40} = (0, 40]. Then
X

c = {x 2 R : x  0 or x > 40} = (�1, 0] [ (40,1).
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Recall that for sets S ,T :

• the union of S and T , denoted S [ T , is all the elements that are in either S and
T

• and the intersection of S and T , denoted S \ T , is all the elements that are in
both S and T .

We extend the definition of union and intersection to an arbitrary family of sets as
follows:

Definition
Let S↵, ↵ 2 A, be a family of sets. A is called the index set. We define

[

↵2A
S↵ := {x : 9↵ such that x 2 S↵},

\

↵2A
S↵ := {x : x 2 S↵ for all ↵ 2 A}.
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Example
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Theorem (De Morgan’s Laws)

Let {S↵}↵2A be an arbitrary collection of sets. Then

 
[

↵2A
S↵

!c

=
\

↵2A
S
c
↵ and

 
\

↵2A
S↵

!c

=
[

↵2A
S
c
↵

Proof.
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Since a set is itself a mathematical object, a set can itself contain sets.

Definition

The power set P(S) of a set S is the set of all subsets of S .

Example

Let S = {a, b, c}.
Then P(S) =
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Another way of building a new set from two old ones is the Cartesian product of two
sets.

Definition

Let S ,T be sets. The Cartesian product S ⇥ T is defined as the set of tuples with
elements from S ,T , i.e

S ⇥ T = {(s, t) : s 2 S and t 2 T}.

This can also be extended inductively to a finite family of sets.
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Ordered set

Definition
A relation R on a set X is a subset of X ⇥ X . A relation  is called a partial order on
X if it satisfies

1 reflexivity:

2 transitivity:

3 anti-symmetry:

The pair (X ,) is called a partially ordered set.

A chain or totally ordered set C ✓ X is a subset with the property x  y or y  x for
any x , y 2 C .
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Example

The real numbers with the usual ordering, (R,) are totally ordered.

Example

The power set of a set X with the ordering given by subsets, (P(X ),✓) is partially
ordered set.
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Example

Let X = {a, b, c , d}. What is P(X )? Find a chain in P(X ).

P(X ) = {;, {a}, {b}, {c}, {d}, {a, b}, {b, c}, {c , d}, {b, d}, {a, c}, {a, d}, {a, b, c},
{b, c , d}, {a, b, d}, {a, c , d},X}
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Example

Consider the set C ([0, 1],R) := {f : [0, 1] ! R : f is continuous}.

For two functions f , g 2 C ([0, 1],R), we define the ordering as f  g if f (x)  g(x)
for x 2 [0, 1]. Then (C ([0, 1],R),) is a partially ordered set.

Can you think of a chain that is a subset of (C ([0, 1],R)?
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Definition

A non-empty partially ordered set (X ,) is well-ordered if every non-empty subset
A ✓ X has a mimimum element.

Definition

Let (X ,) be a partially ordered set and S ✓ X . Then x 2 X is an upper bound for S
if for all s 2 S we have x  s. Similarly y 2 X is a lower bound for S if for all s 2 S ,
y  s. If there exists an upper bound for S , we call S bounded above and if there
exists a lower bound for S , we call S bounded below. If S is bounded above and
bounded below, we say S is bounded.
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We can also ask if there exists a least upper bound or a greatest lower bound.

Definition

Let (X ,) be a partially ordered set and S ✓ X . We call x 2 X least upper bound or
supremum, denoted x = sup S , if x is an upper bound and for any other upper bound
y 2 X of S we have x  y . Likewise x 2 X is the greatest lower bound or infimum for
S , denoted x = inf S , if it is a lower bound and for any other lower bound y 2 X ,
y  x .
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Note that the supremum and infimum of a bounded set do not necessarily need to exist.
However, if they do exists they are unique, which justifies the article the (exercise).
Nevertheless, the reals have a remarkable property, which we will take as an axiom.

Completeness Axiom

Let S ✓ R be bounded above. Then there exists r 2 R such that r = sup S , i.e. S has
a least upper bound.

By setting S
0 = �S := {�s : s 2 S} and noting inf S = � sup S 0, we obtain a similar

statement for infima if S is bounded below. As mentioned above, this property is fairly
special, for example it fails for the rationals.

Example

Let S = {q 2 Q : x
2 < 7}. Then S is bounded above in Q, but there exists no least

upper bound in Q.
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There is a nice alternative characterization for suprema in the real numbers.

Proposition

Let S ✓ R be bounded above. Then r = sup S if and only if r is an upper bound and

for all ✏ > 0 there exists an s 2 S such that r � ✏ < s.

Proof.

())
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Proof.

(()

Using the same trick, we may obtain a similar result for infima.

Example

Consider S = {1/n : n 2 N}. Then sup S = 1 and inf S = 0.
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Functions

Definition
A function f from a set X to a set Y is a subset of X ⇥ Y with the properties:

1 For every x 2 X , there exists a y 2 Y such that (x , y) 2 f

2 If (x , y) 2 f and (x , z) 2 f , then y = z .

X is called the domain of f .

How does this connect to other descriptions of functions you may have seen?

Example

For a set X , the identity function is:

1X : X ! X , x 7! x
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Definition (Image and pre-image)

Let f : X ! Y and A ✓ X and B ✓ Y .

• The image of f is the set f (A) := {f (x) : x 2 A}.
• The pre-image of f is the set f �1(B) := {x : f (x) 2 B}.

Helpful way to think about it for proofs:
If y 2 f (A), then y 2 Y , and there exists an x 2 A such that y = f (x).
If x 2 f

�1(B), then x 2 X and f (x) 2 B .
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Definition (Surjective, injective and bijective)

Let f : X ! Y , where X and Y are sets. Then

• f is injective if x1 6= x2 implies f (x1) 6= f (x2)

• f is surjective if for every y 2 Y , there exists an x 2 X such that y = f (x)

• f is bijective if it is both injective and bijective

Example

Let f : X ! Y , x 7! x
2.

f is surjective if
f is injective if
f is bijective if
f is neither surjective nor injective if
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Proposition

Let f : X ! Y and A ✓ X . Prove that A ✓ f
�1(f (A)), with equality i↵ f is injective.

Proof.
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Cardinality

Intuitively, the cardinality of a set A, denoted |A|, is the number of elements in the set.
For sets with only a finite number of elements, this intuition is correct. We call a set
with finitely many elements finite.

We say that the empty set has cardinality 0 and is finite.
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Proposition

If X is finite set of cardinality n, then the cardinality of P(X ) is 2n.

Proof.
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Proof.
continued
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Therefore
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