Module 3: Metric Spaces and Sequences I Operational math bootcamp

Statistical Sciences
UNIVERSITY OF TORONTO

Emma Kroell

University of Toronto
July 14, 2022

Outline

- Finish cardinality section
- Metrics and norms
- Open and closed sets

Definition

Two sets A and B have same cardinality, $|A|=|B|$, if there exists bijection $f: A \rightarrow B$.

Example

Which is bigger, \mathbb{N} or \mathbb{N}_{0} ?

Cantor-Schröder-Bernstein

Definition

We say that the cardinality of a set A is less than the cardinality of a set B, denoted $|A| \leq|B|$ if there exists an injection $f: A \rightarrow B$.

Theorem (Cantor-Bernstein)

Let A, B, be sets. If $|A| \leq|B|$ and $|B| \leq|A|$, then $|A|=|B|$.

Example

$|\mathbb{N}|=|\mathbb{N} \times \mathbb{N}|$
Proof.

Definition

Let A be a set.
(1) A is finite if there exists an $n \in \mathbb{N}$ and a bijection $f:\{1, \ldots, n\} \rightarrow A$
(2) A is countably infinite if there exists a bijection $f: \mathbb{N} \rightarrow A$
(3) A is countable if it is finite or countably infinite
(4) A is uncountable otherwise

Example

The rational numbers are countable, and in fact $|\mathbb{Q}|=|\mathbb{N}|$.

Proof.

First we show $|\mathbb{N}| \leq\left|\mathbb{Q}^{+}\right|$.

Proof.
Next, we show that $\left|\mathbb{Q}^{+}\right| \leq|\mathbb{N} \times \mathbb{N}|$.

Since we already proved $|\mathbb{N}|=|\mathbb{N} \times \mathbb{N}|$, this means $|\mathbb{N}|=\left|\mathbb{Q}^{+}\right|$.

Proof.

We can extend this to \mathbb{Q} as follows:.

Theorem

The cardinality of \mathbb{N} is smaller than that of $(0,1)$.

Proof.

First, we show that there is an injective map from \mathbb{N} to $(0,1)$.

Next, we show that there is no surjective map from \mathbb{N} to $(0,1)$. We use the fact that every number $r \in(0,1)$ has a binary expansion of the form $r=0 . \sigma_{1} \sigma_{2} \sigma_{3} \ldots$ where $\sigma_{i} \in\{0,1\}, i \in \mathbb{N}$.

Proof.

Now we suppose in order to derive a contradiction that there does exist a surjective map f from \mathbb{N} to (0, 1)., i.e. for $n \in \mathbb{N}$ we have $f(n)=0 . \sigma_{1}(n) \sigma_{2}(n) \sigma_{3}(n) \ldots$. This means we can list out the binary expansions, for example like

$$
\begin{aligned}
& f(1)=0.00000000 \ldots \\
& f(2)=0.1111111111 \ldots \\
& f(3)=0.0101010101 \ldots \\
& f(4)=0.1010101010 \ldots
\end{aligned}
$$

We will construct a number $\tilde{r} \in(0,1)$ that is not in the image of f.

Proof.

Define $\tilde{r}=0 . \tilde{\sigma}_{1} \tilde{\sigma}_{2} \ldots$, where we define the nth entry of \tilde{r} to be the the opposite of the nth entry of the nth item in our list:

$$
\tilde{\sigma}_{n}= \begin{cases}1 & \text { if } \sigma_{n}(n)=0 \\ 0 & \text { if } \sigma_{n}(n)=1\end{cases}
$$

Then \tilde{r} differs from $f(n)$ at least in the nth digit of its binary expansion for all $n \in \mathbb{N}$. Hence, $\tilde{r} \notin f(\mathbb{N})$, which is a contradiction to f being surjective. This technique is often referred to as Cantor's diagonal argument.

Proposition

$(0,1)$ and \mathbb{R} have the same cardinality.

Proof.

We have shown that there are different sizes of infinity, as the cardinality of \mathbb{N} is infinite but still smaller than that of \mathbb{R} or $(0,1)$. In fact, we have

$$
\begin{array}{l|l|l|l|}
|\mathbb{N}| & \left|\mathbb{N}_{0}\right| & |\mathbb{Z}| & |\mathbb{Q}|
\end{array}|\mathbb{R}| .
$$

Because of this, there are special symbols for these two cardinalities: The cardinality of \mathbb{N} is denoted \aleph_{0}, while the cardinality of \mathbb{R} is denoted \mathfrak{c}.

Statistical Sciences
UNIVERSITY OF TORONTO

Metric Spaces

Definition (Metric)

A metric on a set X is a function $d: X \times X \rightarrow \mathbb{R}$ that satisfies:
(a) Positive definiteness:
(b) Symmetry:
(c) Triangle inequality:

A set together with a metric is called a metric space.

Example (\mathbb{R}^{n} with the Euclidean distance)

Definition (Norm)

A norm on an \mathbb{F}-vector space E is a function $\|\cdot\|: E \rightarrow \mathbb{R}$ that satisfies:
(a) Positive definiteness:
(b) Homogeneity:
(c) Triangle inequality:

A vector space with a norm is called a normed space. A normed space is a metric space using the metric $d(x, y)=\|x-y\|$.

Example (p-norm on \mathbb{R}^{n})

The p-norm is defined for $p \geq 1$ for a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ as

The infinity norm is the limit of the p-norm as $p \rightarrow \infty$, defined as

Example (p-norm on $C([0,1] ; \mathbb{R})$)

If we look at the space of continuous functions $C([0,1] ; \mathbb{R})$, the p-norm is
and the ∞-norm (or sup norm) is

Definition

A subset A of a metric space (X, d) is bounded if there exists $M>0$ such that $d(x, y)<M$ for all $x, y \in A$.

Definition

Let (X, d) be a metric space. We define the open ball centred at a point $x_{0} \in X$ of radius $r>0$ as

$$
B_{r}\left(x_{0}\right):=\left\{x \in X: d\left(x, x_{0}\right)<r_{0}\right\} .
$$

Example

In \mathbb{R} with the usual norm (absolute value), open balls are symmetric open intervals, i.e.

Example: Open ball in \mathbb{R}^{2} with different metrics

(a) 1-norm (taxicab metric)
(b) 2-norm (Euclidean metric)
(c) ∞-norm

Figure: $B_{r}(0)$ for different metrics

Definition (Open and closed sets)

Let (X, d) be a metric space.

- A set $U \subseteq X$ is open if for every $x \in U$ there exists $\epsilon>0$ such that $B_{\epsilon}(x) \subseteq U$.
- A set $F \subseteq X$ is closed if $F^{c}:=X \backslash F$ is open.

Proposition

Let (X, d) be a metric space.
(1) Let $A_{1}, A_{2} \subseteq X$. If A_{1} and A_{2} are open, then $A_{1} \cap A_{2}$ is open.
(2) If $A_{i} \subseteq X, i \in I$ are open, then $\cup_{i \in I} A_{i}$ is open.

Proof.

(1) Let $A_{1}, A_{2} \subseteq X$. If A_{1} and A_{2} are open, then $A_{1} \cap A_{2}$ is open.
(2) If $A_{i} \subseteq X, i \in I$ are open, then $\cup_{i \in I} A_{i}$ is open.

Using DeMorgan, we immediately have the following corollary:
Corollary
Let (X, d) be a metric space.
(1) Let $A_{1}, A_{2} \subseteq X$. If A_{1} and A_{2} are closed, then $A_{1} \cup A_{2}$ is closed.
(2) If $A_{i} \subseteq X, i \in I$ are closed, then $\cap_{i \in I} A_{i}$ is closed.

Definition (Interior and closure)

Let $A \subseteq X$ where (X, d) is a metric space.

- The closure of A is $\bar{A}:=$
- The interior of A is $\AA:=$
- The boundary of A is $\partial A:=$

Example

Let $X=(a, b] \subseteq \mathbb{R}$ with the ordinary (Euclidean) metric. Then

Proposition

Let $A \subseteq X$ where (X, d) is a metric space. Then $A=A \backslash \partial A$.
Proof.

References

Runde, Volker (2005). A Taste of Topology. Universitext. url:
https://link.springer.com/book/10.1007/0-387-28387-0
Zwiernik, Piotr (2022). Lecture notes in Mathematics for Economics and Statistics. url: http://84.89.132.1/ piotr/docs/RealAnalysisNotes.pdf

