Module 3: Metric Spaces and Sequences I Operational math bootcamp

Emma Kroell

University of Toronto

July 14, 2022

Outline

- Finish cardinality section
- Metrics and norms
- Open and closed sets

Definition

Two sets A and B have same cardinality, |A| = |B|, if there exists bijection $f : A \to B$.

Example

Which is bigger, \mathbb{N} or \mathbb{N}_0 ?

Cantor-Schröder-Bernstein

Definition

We say that the cardinality of a set A is less than the cardinality of a set B, denoted $|A| \le |B|$ if there exists an injection $f : A \to B$.

Theorem (Cantor-Bernstein)

Let A, B, be sets. If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.

Example

$$|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$$

Proof.

Definition

Let A be a set.

- (1) A is *finite* if there exists an $n \in \mathbb{N}$ and a bijection $f : \{1, \ldots, n\} \to A$
- **2** A is *countably infinite* if there exists a bijection $f : \mathbb{N} \to A$
- **3** A is *countable* if it is finite or countably infinite
- **4** A is *uncountable* otherwise

Example

The rational numbers are countable, and in fact $|\mathbb{Q}| = |\mathbb{N}|$.

Proof.

First we show $|\mathbb{N}| \leq |\mathbb{Q}^+|$.

Proof.

Next, we show that $|\mathbb{Q}^+| \leq |\mathbb{N} \times \mathbb{N}|$.

Since we already proved $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$, this means $|\mathbb{N}| = |\mathbb{Q}^+|$.

Proof.

We can extend this to ${\mathbb Q}$ as follows:.

Theorem

The cardinality of \mathbb{N} is smaller than that of (0, 1).

Proof.

First, we show that there is an injective map from \mathbb{N} to (0,1).

Next, we show that there is no surjective map from \mathbb{N} to (0, 1). We use the fact that every number $r \in (0, 1)$ has a binary expansion of the form $r = 0.\sigma_1\sigma_2\sigma_3...$ where $\sigma_i \in \{0, 1\}, i \in \mathbb{N}$.

Proof.

Now we suppose in order to derive a contradiction that there does exist a surjective map f from \mathbb{N} to (0, 1), i.e. for $n \in \mathbb{N}$ we have $f(n) = 0.\sigma_1(n)\sigma_2(n)\sigma_3(n)\ldots$ This means we can list out the binary expansions, for example like

 $f(1) = 0.0000000 \dots$ $f(2) = 0.111111111 \dots$ $f(3) = 0.0101010101 \dots$ $f(4) = 0.101010101 \dots$

We will construct a number $\tilde{r} \in (0, 1)$ that is not in the image of f.

Proof.

Define $\tilde{r} = 0.\tilde{\sigma}_1 \tilde{\sigma}_2 \dots$, where we define the *n*th entry of \tilde{r} to be the the opposite of the *n*th entry of the *n*th item in our list:

$$\widetilde{\sigma}_n = \begin{cases}
1 & \text{if } \sigma_n(n) = 0, \\
0 & \text{if } \sigma_n(n) = 1.
\end{cases}$$

Then \tilde{r} differs from f(n) at least in the *n*th digit of its binary expansion for all $n \in \mathbb{N}$. Hence, $\tilde{r} \notin f(\mathbb{N})$, which is a contradiction to f being surjective. This technique is often referred to as Cantor's diagonal argument.

Proposition

(0,1) and $\mathbb R$ have the same cardinality.

Proof.

We have shown that there are different sizes of infinity, as the cardinality of \mathbb{N} is infinite but still smaller than that of \mathbb{R} or (0,1). In fact, we have

 $|\mathbb{N}| \quad |\mathbb{N}_0| \quad |\mathbb{Z}| \quad |\mathbb{Q}| \quad |\mathbb{R}|.$

Because of this, there are special symbols for these two cardinalities: The cardinality of \mathbb{N} is denoted \aleph_0 , while the cardinality of \mathbb{R} is denoted \mathfrak{c} .

Metric Spaces

Definition (Metric)

A *metric* on a set X is a function $d : X \times X \rightarrow \mathbb{R}$ that satisfies:

- (a) Positive definiteness:
- (b) Symmetry:
- (c) Triangle inequality:

A set together with a metric is called a metric space.

Example (\mathbb{R}^n with the Euclidean distance)

Definition (Norm)

A norm on an \mathbb{F} -vector space E is a function $\|\cdot\|: E \to \mathbb{R}$ that satisfies:

- (a) Positive definiteness:
- (b) Homogeneity:
- (c) Triangle inequality:

A vector space with a norm is called a normed space. A normed space is a metric space using the metric d(x, y) = ||x - y||.

Example (*p*-norm on \mathbb{R}^n)

The *p*-norm is defined for $p \ge 1$ for a vector $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ as

The infinity norm is the limit of the *p*-norm as $p \to \infty$, defined as

Example (*p*-norm on $C([0,1];\mathbb{R})$)

If we look at the space of continuous functions $C([0, 1]; \mathbb{R})$, the *p*-norm is

and the $\infty-\text{norm}$ (or sup norm) is

Definition

A subset A of a metric space (X, d) is *bounded* if there exists M > 0 such that d(x, y) < M for all $x, y \in A$.

Definition

Let (X, d) be a metric space. We define the *open ball* centred at a point $x_0 \in X$ of radius r > 0 as

$$B_r(x_0) := \{ x \in X : d(x, x_0) < r_0 \}.$$

Example

In ${\mathbb R}$ with the usual norm (absolute value), open balls are symmetric open intervals, i.e.

Example: Open ball in \mathbb{R}^2 with different metrics

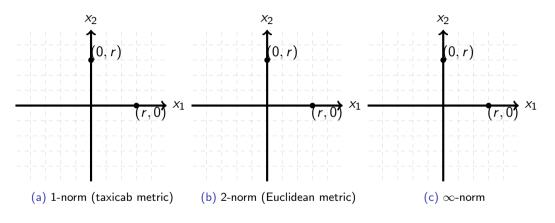


Figure: $B_r(0)$ for different metrics

Definition (Open and closed sets)

Let (X, d) be a metric space.

- A set $U \subseteq X$ is open if for every $x \in U$ there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq U$.
- A set $F \subseteq X$ is *closed* if $F^c := X \setminus F$ is open.

Proposition

Let (X, d) be a metric space.

- 1 Let $A_1, A_2 \subseteq X$. If A_1 and A_2 are open, then $A_1 \cap A_2$ is open.
- **2** If $A_i \subseteq X$, $i \in I$ are open, then $\cup_{i \in I} A_i$ is open.

Proof.

(1) Let $A_1, A_2 \subseteq X$. If A_1 and A_2 are open, then $A_1 \cap A_2$ is open.

(2) If $A_i \subseteq X$, $i \in I$ are open, then $\bigcup_{i \in I} A_i$ is open.

Using DeMorgan, we immediately have the following corollary:

Corollary

Let (X, d) be a metric space.

- **1** Let $A_1, A_2 \subseteq X$. If A_1 and A_2 are closed, then $A_1 \cup A_2$ is closed.
- **2** If $A_i \subseteq X$, $i \in I$ are closed, then $\cap_{i \in I} A_i$ is closed.

Definition (Interior and closure)

Let $A \subseteq X$ where (X, d) is a metric space.

- The *closure* of A is $\overline{A} :=$
- The *interior* of A is $\overset{\circ}{A} :=$
- The *boundary* of A is $\partial A :=$

Example

Let $X = (a, b] \subseteq \mathbb{R}$ with the ordinary (Euclidean) metric. Then

Proposition

Let $A \subseteq X$ where (X, d) is a metric space. Then $\mathring{A} = A \setminus \partial A$.

Proof.

References

Runde ,Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Zwiernik, Piotr (2022). *Lecture notes in Mathematics for Economics and Statistics*. url: http://84.89.132.1/ piotr/docs/RealAnalysisNotes.pdf

