Module 3: Metric Spaces and Sequences I Operational math bootcamp

Statistical Sciences
UNIVERSITY OF TORONTO

Emma Kroell

University of Toronto
July 14, 2022

Outline

- Finish cardinality section
- Metrics and norms
- Open and closed sets

Definition
Two sets A and B have same cardinality, $|A|=|B|$, if there exists bijection $f: A \rightarrow B$.

Example
Which is bigger, \mathbb{N} or \mathbb{N}_{0} ?

$$
\begin{aligned}
& |\mathbb{N}|=\left|N_{0}\right| \\
& f: \mathbb{N}_{0} \rightarrow \mathbb{N} n \rightarrow n+1 \\
& \text { is a bijection }
\end{aligned}
$$

Cantor-Schröder-Bernstein

Definition

We say that the cardinality of a set A is less than the cardinality of a set B, denoted $|A| \leq|B|$ if there exists an injection $f: A \rightarrow B$.

Theorem (Cantor-Bernstein)

Let A, B, be sets. If $|A| \leq|B|$ and $|B| \leq|A|$, then $|A|=|B|$.

Proof.
First, we show $|\mathbb{N}| \leq|\mathbb{N} \times \mathbb{N}|$.
$f: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N} \quad n \longmapsto(n, 1)$ is an injection, therefore $|\mathbb{N}||\leq|\mathbb{N} \times \mathbb{N}|$.
Next, we show $|\mathbb{N} \times \mathbb{N}| \leq|\mathbb{N}|$.

$$
\begin{aligned}
& g: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}(n, m) \mapsto 2^{n} 3^{m} \\
& \text { a aim a is an injection. Proof. Let } n,
\end{aligned}
$$

We claim g is an injection. Proof. Let $n, n_{2}, m_{1}, m_{2} \in \mathbb{N}$ such that $2^{n_{1}} 3^{m_{1}}=2^{n_{2}} 3^{m_{2}}$. By the Fund. Thm of Arithmetic, we must have $n_{1}=n_{2}$ and $m_{1}=m_{2}$.
(i vel

Definition

Let A be a set.
(1) A is finite if there exists an $n \in \mathbb{N}$ and a bijection $f:\{1, \ldots, n\} \rightarrow A$
(2) A is countably infinite if there exists a bijection $f: \mathbb{N} \rightarrow A$
(3) A is countable if it is finite or countably infinite
(4) A is uncountable otherwise

Example
The rational numbers are countable, and in fact $|\mathbb{Q}|=|\mathbb{N}|$.

Proof.
First we show $|\mathbb{N}| \leq\left|\mathbb{Q}^{+}\right| . \quad \mathbb{Q}^{+}:=\{x \in \mathbb{Q} \mid x>0\}$

$$
\begin{array}{llllll}
1 \rightarrow \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots \\
2^{2} & \frac{2}{2} & \frac{2}{3} & \frac{2}{4} & \cdots \\
3 & \frac{3}{2} & \frac{3}{3} & \frac{3}{4} & \cdots \\
\vdots & \vdots & \vdots & \vdots &
\end{array}
$$

This is an injection from \mathbb{N} to \mathbb{Q}^{+}.

Proof.
Next, we show that $\left|\mathbb{Q}^{+}\right| \leq|\mathbb{N} \times \mathbb{N}|$.

$$
f: \mathbb{Q}^{+} \rightarrow \mathbb{N} \times \mathbb{N} \quad \frac{p}{q} \rightarrow(p, q)
$$

Since we already proved $|\mathbb{N}|=|\mathbb{N} \times \mathbb{N}|$, this means $|\mathbb{N}|=\left|\mathbb{Q}^{+}\right|$.

Proof.
We can extend this to \mathbb{Q} as follows:
Let $f: \mathbb{N} \rightarrow \mathbb{Q}^{+}$be a bijection Then define $g: \mathbb{N} \rightarrow \mathbb{Q}$ as follows

$$
\begin{aligned}
& g(1) \stackrel{0}{=0} \\
& g(n)= \begin{cases}f(n) & n \text { is even } \\
-f(n) & n \text { is odd }\end{cases}
\end{aligned}
$$

for $n>1$.
${ }^{6}$

Theorem

The cardinality of \mathbb{N} is smaller than that of $(0,1)$.

Proof.

First, we show that there is an injective map from \mathbb{N} to $(0,1)$.

$$
f: \mathbb{N} \rightarrow(0,1) \quad n \rightarrow \frac{1}{n}
$$

Next, we show that there is no surjective map from \mathbb{N} to $(0,1)$. We use the fact that every number $r \in(0,1)$ has a binary expansion of the form $r=0 . \sigma_{1} \sigma_{2} \sigma_{3} \ldots$ where $\sigma_{i} \in\{0,1\}, i \in \mathbb{N}$.

Proof.

Now we suppose in order to derive a contradiction that there does exist a surjective map f from \mathbb{N} to (0, 1)., i.e. for $n \in \mathbb{N}$ we have $f(n)=0 . \sigma_{1}(n) \sigma_{2}(n) \sigma_{3}(n) \ldots$. This means we can list out the binary expansions, for example like

$$
\left\{\begin{array}{l}
f(1)=0.00000000 \ldots \\
f(2)=0.1 \underline{1} 11111111 \ldots \\
f(3)=0.0101010101 \ldots \\
f(4)=0.1010101010 \ldots
\end{array}\right.
$$

We will construct a number $\tilde{r} \in(0,1)$ that is not in the image of f.

Proof.

Define $\tilde{r}=0 . \tilde{\sigma}_{1} \tilde{\sigma}_{2} \ldots$, where we define the nth entry of \tilde{r} to be the the opposite of the nth entry of the nth item in our list:

$$
\tilde{\sigma}_{n}= \begin{cases}1 & \text { if } \sigma_{n}(n)=0 \\ 0 & \text { if } \sigma_{n}(n)=1\end{cases}
$$

Then \tilde{r} differs from $f(n)$ at least in the nth digit of its binary expansion for all $n \in \mathbb{N}$. Hence, $\tilde{r} \notin f(\mathbb{N})$, which is a contradiction to f being surjective. This technique is often referred to as Cantor's diagonal argument.

Proposition

$(0,1)$ and \mathbb{R} have the same cardinality.

Proof.

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow(0,1) \quad x \mapsto \frac{1}{\pi}\left(\arctan (x)+\frac{\pi}{2}\right) \\
& \text { is a bijection }
\end{aligned}
$$

We have shown that there are different sizes of infinity, as the cardinality of \mathbb{N} is infinite but still smaller than that of \mathbb{R} or $(0,1)$. In fact, we have

$$
|\mathbb{N}|=\left|\mathbb{N}_{0}\right|=|\mathbb{Z}|=|\mathbb{Q}|<|\mathbb{R}|
$$

Because of this, there are special symbols for these two cardinalities: The cardinality of \mathbb{N} is denoted \aleph_{0}, while the cardinality of \mathbb{R} is denoted \mathfrak{c}.

Metric Spaces

Definition (Metric)
A metric on a set X is a function $d: X \times X \rightarrow \mathbb{R}$ that satisfies:
(a) Positive definiteness: $\quad d(x, y) \geq 0 \quad \forall x, y \in X \& d(x, y)=0$
(b) Symmetry: $x, y \in x, d(x, y)=d(y, x) \quad \Leftrightarrow x=y$
(c) Triangle inequality: $x, y, z \in X \quad d(x, z) \leq d(x, y)+d / y, z)$

A set together with a metric is called a metric space.

Example (\mathbb{R}^{n} with the Euclidean distance)

$$
d(x, y)=\sqrt{\sum_{j=1}^{n}\left(x_{j}-y_{j}\right)^{2}} \text { for } x, y \in \mathbb{R}^{n}
$$

\mathbb{R}^{n} with Euclidean distance is a metric space

F: field
\mathbb{F} is \mathbb{R} of \mathbb{C}
Definition (Norm)
A norm on an \mathbb{F}-vector space E is a function $\|\cdot\|: E \rightarrow \mathbb{R}$ that satisfies:
(a) Positive definiteness: $\|x\| \geq 0 \quad \forall x \in E \& \quad\|x\|=0$ e $x=0$
(b) Homogeneity: $x \in E \quad \alpha \in \mathbb{F},\|\alpha x\|=\|\alpha\|\|x\|$
(c) Triangle inequality: $x, y \in E \quad\|x+y\| \leq|x| \mid+\|y\|$
A vector space with a norm is called a normed space. A normed space is a metric space using the metric $d(x, y)=\|x-y\|$.

Example (p-norm on \mathbb{R}^{n})

The p-norm is defined for $p \geq 1$ for a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ as

$$
\|x\|_{p}=\left(\left.\sum_{i=1}^{n}\left|v_{i}\right|\right|^{p}\right)^{1 / p}
$$

The infinity norm is the limit of the p-norm as $p \rightarrow \infty$, defined as

$$
\|x\|_{\infty}=\max _{i=1, \ldots, n}\left|x_{i}\right|
$$

Example (p-norm on $C([0,1] ; \mathbb{R})$)
If we look at the space of continuous functions $C([0,1] ; \mathbb{R})$, the p-norm is

$$
\|f\|_{p}=\left(\int_{0}^{1}|f(x)|^{p} d x\right)^{1 / p}
$$

and the ∞-norm (or sup norm) is

$$
\|f\|_{\infty}=\max _{x \in[0,1]}|f(x)|
$$

Definition

A subset A of a metric space (X, d) is bounded if there exists $M>0$ such that $d(x, y)<M$ for all $x, y \in A$.

Definition

Let (X, d) be a metric space. We define the open ball centred at a point $x_{0} \in X$ of radius $r>0$ as

$$
B_{r}\left(x_{0}\right):=\left\{x \in X: d\left(x, x_{0}\right)<r_{0}\right\} .
$$

Example

In \mathbb{R} with the usual norm (absolute value), open balls are symmetric open intervals,
ie.

$$
B_{r}\left(x_{0}\right)=\left(x_{0}-r, x_{0}+r\right)
$$

Example: Open ball in \mathbb{R}^{2} with different metrics

(a) 1-norm (taxicab metric)
(b) 2-norm (Euclidean metric)

$$
\left.d(x, y)=\sum_{i=1}^{2} \mid v i-b i\right)_{\text {Figure: }} B_{r}(0) \text { for different metrics }
$$

(c) ∞-norm $\max _{j=1,2}\left|x_{j}-y_{j}\right|$

Definition (Open and closed sets)

Let (X, d) be a metric space.

- A set $U \subseteq X$ is open if for every $x \in U$ there exists $\epsilon>0$ such that $B_{\epsilon}(x) \subseteq U$.
- A set $F \subseteq X$ is closed if $F^{c}:=X \backslash F$ is open.

$$
\phi, X \text { ave both open \& closed }
$$

Proposition

Let (X, d) be a metric space.
(1) Let $A_{1}, A_{2} \subseteq X$. If A_{1} and A_{2} are open, then $A_{1} \cap A_{2}$ is open.
(2) If $A_{i} \subseteq X, i \in I$ are open, then $\cup_{i \in I} A_{i}$ is open.

Proof.
(1) Let $A_{1}, A_{2} \subseteq X$. If A_{1} and A_{2} are open, then $A_{1} \cap A_{2}$ is open.

Since A_{1} is open, for each $x \in A_{1}, \exists \varepsilon_{1}>0$ s.t. $B_{\varepsilon_{1}}(x) \leqslant A_{1}$. Since A_{2} is open, $\exists \varepsilon_{2}>0$ s.t. $B_{\varepsilon_{2}}(x) \subseteq A_{2}$.
Let $x \in A_{1} \cap A_{2}$. Choose $\varepsilon=\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$.

Let $x \in \bigcup_{i \in I} A_{i}, \exists i \in I$ sit. $x \in A_{i}$
Since $A_{i}{ }^{i \in I}$ is open, $\exists \varepsilon>0$ s.t $B_{\varepsilon}(x) \subseteq A_{i}$ Since $A_{i} \subseteq \bigcup_{i \in I} A_{i}$, we are dore.

Using DeMorgan, we immediately have the following corollary:
Corollary
Let (X, d) be a metric space.
(1) Let $A_{1}, A_{2} \subseteq X$. If A_{1} and A_{2} are closed, then $A_{1} \cup A_{2}$ is closed.
(2) If $A_{i} \subseteq X, i \in I$ are closed, then $\cap_{i \in I} A_{i}$ is closed.

Definition (Interior and closure)
Let $A \subseteq X$ where (X, d) is a metric space.

- The closure of A is $\bar{A}:=\left\{x \in X: \forall \varepsilon>O \quad B_{\varepsilon}(x) \cap A \neq \varnothing\right\}$
- The interior of A is $A:=\left\{x \in A: \exists \varepsilon>0\right.$ s.t. $\left.B_{\varepsilon}(x) \subseteq A\right\}$
- The boundary of A is $\partial A:=\varepsilon \chi \in X: \forall \varepsilon>0, B_{\varepsilon}(x) \cap A \neq \varnothing$ and $B_{\varepsilon}(x) \cap A C \not \not \neq \xi$

Example
Let $X=(a, b] \subseteq \mathbb{R}$ with the ordinary (Euclidean) metric. Then

$$
\bar{x}=[a, b], \quad \dot{x}=(a, b), \quad \partial x=\{a, b\}
$$

Proposition
Let $A \subseteq X$ where (X, d) is a metric space. Then $\AA=A \backslash \partial A$.
Proof.
First, show $A \subseteq A \backslash \partial A$
Let $x \in \AA . \exists \varepsilon>0$ s.t $B_{\varepsilon}(x) \subseteq A$. Clearly $x \in A$. $\exists \varepsilon>0$ s.t. $B_{\varepsilon}(x) \cap A^{C}=\varnothing$. Therefore $x \notin \partial A$

$$
x \in A \backslash \partial A
$$

Next, we show, $A \backslash \partial \subseteq \AA$.
Let $x \in A \backslash \partial A$. Then $x \in A$ and $x \notin \partial A$. $x \notin \partial A$ means $\exists \varepsilon>0$ st. $B_{\varepsilon}(x) \cap A=\phi$ or $B_{\varepsilon}(x) \cap A^{C}=\varnothing$. Since $x \in A$, the first is false, \square

References

Runde, Volker (2005). A Taste of Topology. Universitext. url:
https://link.springer.com/book/10.1007/0-387-28387-0
Zwiernik, Piotr (2022). Lecture notes in Mathematics for Economics and Statistics. url: http://84.89.132.1/ piotr/docs/RealAnalysisNotes.pdf

