Module 3: Metric Spaces and Sequences I Operational math bootcamp

Emma Kroell

University of Toronto

July 14, 2022

Outline

- Finish cardinality section
- Metrics and norms
- Open and closed sets

Definition

Two sets A and B have same cardinality, |A| = |B|, if there exists bijection $f : A \rightarrow B$.

Example

Which is bigger,
$$\mathbb{N}$$
 or \mathbb{N}_0 ?
 $(\mathbb{N}) = [\mathbb{N}_0]$
 $f: \mathbb{N}_0 \longrightarrow \mathbb{N} \longrightarrow \mathbb{N} + 1$
is a bijection

Cantor-Schröder-Bernstein

Definition

We say that the cardinality of a set A is less than the cardinality of a set B, denoted $|A| \leq |B|$ if there exists an injection $f : A \to B$.

Theorem (Cantor-Bernstein)

Let A, B, be sets. If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.

Example

$$|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$$

Proof.

÷

Definition

Let A be a set.

(1) A is *finite* if there exists an $n \in \mathbb{N}$ and a bijection $f : \{1, \ldots, n\} \to A$

2 A is *countably infinite* if there exists a bijection $f : \mathbb{N} \to A$

3 A is *countable* if it is finite or countably infinite

4 A is *uncountable* otherwise

Example

The rational numbers are countable, and in fact $|\mathbb{Q}| = |\mathbb{N}|$.

Proof.

First we show
$$|\mathbb{N}| \leq |\mathbb{Q}^+|$$
. $\mathbb{Q}^+ := \xi \times \in \mathbb{Q} \setminus X > 0$
 $1 \rightarrow \frac{1}{3} - \frac{1}{4} - \frac{1}{3} - \frac{1}{4} - \frac{1}{3} - \frac{1}{4} - \frac{1}{3} - \frac{1$

Proof.

Next, we show that $|\mathbb{Q}^+| \leq |\mathbb{N} \times \mathbb{N}|$. f: Q+ -> IN×IN Pa -> (p, q) Since we already proved $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$, this means $|\mathbb{N}| = |\mathbb{Q}^+|$.

Proof.

We can extend this to ${\mathbb Q}$ as follows:.

Let
$$f: |N \to Q^+$$
 be a bijection
Then define $q: |N \to Q$ as follows
 $g(r) = 0$
 $g(r) = (f(r))$ n is even
 $g(r) = (-f(r))$ n is odd
for $n > 1$.

Theorem

The cardinality of \mathbb{N} is smaller than that of (0, 1).

Proof.

First, we show that there is an injective map from \mathbb{N} to (0,1).

$$f: M \rightarrow (0, 1)$$
 $n \rightarrow -\frac{1}{2}$

Next, we show that there is no surjective map from \mathbb{N} to (0, 1). We use the fact that every number $r \in (0, 1)$ has a binary expansion of the form $r = 0.\sigma_1\sigma_2\sigma_3...$ where $\sigma_i \in \{0, 1\}, i \in \mathbb{N}$.

Proof.

Now we suppose in order to derive a contradiction that there does exist a surjective map f from \mathbb{N} to (0, 1), i.e. for $n \in \mathbb{N}$ we have $f(n) = 0.\sigma_1(n)\sigma_2(n)\sigma_3(n)\ldots$ This means we can list out the binary expansions, for example like

$$f(1) = 0.00000000...$$

$$f(2) = 0.1111111111...$$

$$f(3) = 0.0101010101...$$

$$f(4) = 0.1010101010...$$

We will construct a number $\tilde{r} \in (0, 1)$ that is not in the image of f.

Proof.

Define $\tilde{r} = 0.\tilde{\sigma}_1 \tilde{\sigma}_2 \dots$, where we define the *n*th entry of \tilde{r} to be the the opposite of the *n*th entry of the *n*th item in our list:

$$\widetilde{\sigma}_n = \begin{cases}
1 & \text{if } \sigma_n(n) = 0, \\
0 & \text{if } \sigma_n(n) = 1.
\end{cases}$$

Then \tilde{r} differs from f(n) at least in the *n*th digit of its binary expansion for all $n \in \mathbb{N}$. Hence, $\tilde{r} \notin f(\mathbb{N})$, which is a contradiction to f being surjective. This technique is often referred to as Cantor's diagonal argument.

Proposition

(0,1) and $\mathbb R$ have the same cardinality.

Proof.

We have shown that there are different sizes of infinity, as the cardinality of \mathbb{N} is infinite but still smaller than that of \mathbb{R} or (0, 1). In fact, we have

$$|\mathbb{N}| = |\mathbb{N}_0| = |\mathbb{Z}| = |\mathbb{Q}| < |\mathbb{R}|.$$

Because of this, there are special symbols for these two cardinalities: The cardinality of \mathbb{N} is denoted \aleph_0 , while the cardinality of \mathbb{R} is denoted \mathfrak{c} .

Metric Spaces

Definition (Metric)

A *metric* on a set X is a function $d : X \times X \rightarrow \mathbb{R}$ that satisfies:

(a) Positive definiteness: $d(x,y) \ge 0$ $\forall x,y \in X$ & d(x,y) = 0(b) Symmetry: $x,y \in X$, d(x,y) = d(y,x) $(=) \quad x = y$ (c) Triangle inequality: $x,y,Z \in X$, $d(x,Z) \le d(x,y) + d(y,Z)$ A set together with a metric is called a metric space.

Example (\mathbb{R}^n with the Euclidean distance)

$$d(x,y) = \sqrt{\frac{2}{j}(x_j - y_j)^{2^{1}}}$$
 for $x,y \in IR^n$
 R^n with Euclidean distance is a metric
space

IF: field TE is R of C

Definition (Norm)

A norm on an \mathbb{F} -vector space E is a function $\|\cdot\|: E \to \mathbb{R}$ that satisfies: (a) Positive definiteness: $\|\chi\| \ge 0$ $\forall \chi \in E$ $\mathring{\mathbb{F}}$ $\|\chi\| = 0 \rightleftharpoons \chi = 0$ (b) Homogeneity: $\chi \in E$ $\mathcal{A} \in \mathbb{F}$ $\int \|\mathcal{A} \chi\| = \|\mathcal{A} \setminus \|\chi\|$ (c) Triangle inequality: $\chi, \chi \in E$ $\|\chi + \chi\| \leq \|\chi\| + \|\chi\|$ A vector space with a norm is called a normed space. A normed space is a metric space using the metric $d(x, y) = \|x - y\|$.

Example (*p*-norm on \mathbb{R}^n)

The *p*-norm is defined for $p \ge 1$ for a vector $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ as

$$\|X\|_{P} = \left(\sum_{i=1}^{p} |X_{i}|^{P}\right)^{1/P}$$

The infinity norm is the limit of the *p*-norm as $p \to \infty$, defined as

$$\|x\|_{\infty} = \max_{i=1,\dots,n} |x_i|$$

Example (*p*-norm on $C([0,1];\mathbb{R})$)

If we look at the space of continuous functions $C([0, 1]; \mathbb{R})$, the *p*-norm is

and the $\infty-{\sf norm}$ (or sup norm) is

$$\|f\|_{\infty} = \max \{f(x)\}$$

Definition

A subset A of a metric space (X, d) is *bounded* if there exists M > 0 such that d(x, y) < M for all $x, y \in A$.

Definition

Let (X, d) be a metric space. We define the *open ball* centred at a point $x_0 \in X$ of radius r > 0 as

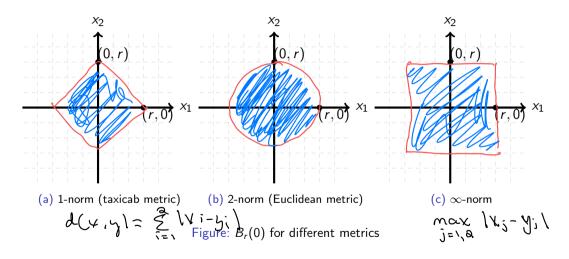
$$B_r(x_0) := \{x \in X : d(x, x_0) < r_{\bullet}\}.$$

Example

In \mathbb{R} with the usual norm (absolute value), open balls are symmetric open intervals,

i.e.
$$B_r(x_0) = (\chi_0 - r, \chi_0 + r)$$

Example: Open ball in \mathbb{R}^2 with different metrics



Definition (Open and closed sets)

Let (X, d) be a metric space.

- A set $U \subseteq X$ is open if for every $x \in U$ there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq U$.
- A set $F \subseteq X$ is *closed* if $F^c := X \setminus F$ is open.

Proposition

Let (X, d) be a metric space.

- 1 Let $A_1, A_2 \subseteq X$. If A_1 and A_2 are open, then $A_1 \cap A_2$ is open.
- **2** If $A_i \subseteq X$, $i \in I$ are open, then $\cup_{i \in I} A_i$ is open.

Proof.

(1) Let $A_1, A_2 \subseteq X$. If A_1 and A_2 are open, then $A_1 \cap A_2$ is open. Since A, is open, for each xEA, JE, 70 s.t. BE (X) = A, Since Az is open, ZEZ>O S.E. BE (X) SA2. Let xEA, MAZ, Choose e=min {E, Ezz. (2) If $A_i \subseteq X$, $i \in I$ are open, then $\bigcup_{i \in I} A_i$ is open. Let XEU Ai. JIEI S.L. XEAI. Since At is open, ZEDO S. + B, (x) = Ai. Since Ai - MEI Ai, we are done.

Using DeMorgan, we immediately have the following corollary:

Corollary

Let (X, d) be a metric space.

- **1** Let $A_1, A_2 \subseteq X$. If A_1 and A_2 are closed, then $A_1 \cup A_2$ is closed.
- **2** If $A_i \subseteq X$, $i \in I$ are closed, then $\cap_{i \in I} A_i$ is closed.

Definition (Interior and closure)

Let $A \subseteq X$ where (X, d) is a metric space.

- The closure of A is $\overline{A} := \{\chi \in X : \forall \xi > 0 \mid \beta_{\varepsilon}(\chi) \cap A \neq \emptyset \}$
- The interior of A is A := EXEA: 320 S.L. BE (x) C AZ
- The boundary of A is $\partial A := \xi \chi + \chi + \xi = 0$, $B_{\varepsilon}(\chi) \cap A \neq \emptyset$ and $B_{\varepsilon}(\chi) \cap A^{c} \neq \emptyset \leq$

Example

Let
$$X = (a, b] \subseteq \mathbb{R}$$
 with the ordinary (Euclidean) metric. Then
 $\overline{X} = [a, b], \quad \widehat{X} = (a, b), \quad \partial X = \xi a, b \zeta$

Proposition

Let
$$A \subseteq X$$
 where (X, d) is a metric space. Then $\mathring{A} = A \setminus \partial A$.

Proof.

Thus xt Å.

Runde ,Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Zwiernik, Piotr (2022). *Lecture notes in Mathematics for Economics and Statistics*. url: http://84.89.132.1/ piotr/docs/RealAnalysisNotes.pdf

