Module 4: Metric Spaces and Sequences II

1. Find the closure, interior, and boundary of the following sets using Euclidean distance:
(i) $\left\{(x, y) \in \mathbb{R}^{2}: y<x^{2}\right\} \subseteq \mathbb{R}^{2}$
(ii) $[0,1) \times[0,1) \subseteq \mathbb{R}^{2}$
(iii) $\{0\} \cup\{1 / n: n \in \mathbb{N}\} \subseteq \mathbb{R}$
2. Prove the following: Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in a metric space (X, d) that converges to a point $x \in X$. Then x is unique.
3. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ be sequences in \mathbb{R} such that $x_{n} \rightarrow x$ and and $y_{n} \rightarrow y$, with $\alpha, x, y, \in \mathbb{R}$.
(i) Show that $\alpha x_{n} \rightarrow \alpha x$.
(i) Show that $x_{n}+y_{n} \rightarrow x+y$.
4. Show that discrete metric spaces (i.e. those with the metric defined as define $d: X \times X \rightarrow \mathbb{R}$ by $d(x, x)=0$ and $d(x, y)=1$ for $x \neq y \in X)$ are complete.
5. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces and let $f: X \rightarrow Y$. Prove that f is Lipschitz continuous $\Rightarrow f$ is uniformly continuous $\Rightarrow f$ is continuous.

Provide examples to show that the other directions do not hold.
6. Show that the function $f(x)=\frac{1}{2}\left(x+\frac{5}{x}\right)$ has a unique fixed point on $(0, \infty)$. What is it? (Hint: you will have to restrict the interval.)

