Module 4: Metric Spaces and Sequences II Operational math bootcamp

Emma Kroell

University of Toronto

July 15, 2022

Outline

- Sequences
 - Cauchy sequences
 - subsequences
- Continuous functions
 - Contractions
- Equivalence of metrics

Sequences

Definition (Sequence)

Let (X, d) be a metric space. A sequence is an ordered list of points x_n , $n \in \mathbb{N}$, in X, denoted $(x_n)_{n \in \mathbb{N}}$. We say that a sequence $(x_n)_{n \in \mathbb{N}}$ converges to a point $x \in X$ if

Proposition

Let (X, d) be a metric space, and let $A \subseteq X$. Then \overline{A} is equal to the set of points in X which are limits of a sequence in A.

Proof.

Proof continued

Corollary

A set $F \subseteq X$, where (X, d) is a metric space, is closed if and only if every sequence in F which converges in X converges to a point in F.

Cluster points of a set

Definition

Let (X, d) be a metric space and $A \subseteq X$. A point $x \in X$ is a *cluster point* of A (also called accumulation point) if for every $\epsilon > 0$, $B_{\epsilon}(x)$ contains infinitely many points in A.

Proposition

 $x \in X$ is a cluster point of $A \subseteq X$ where (X, d) is a metric space if and only if there exists a sequence of points $x_n \in A$, $n \in \mathbb{N}$, such that $x_n \to x$.

Proof.

Combining the previous result with the limit characterization of closure gives the following:

CorollaryFor $A \subseteq X$, (X, d) a metric space, we have $\overline{A} = A \cup \{x \in X : x \text{ is a cluster point of } A\}.$

Cauchy sequences

Definition (Cauchy sequence)

Let (X, d) be a metric space. A sequence denoted $(x_n)_{n \in \mathbb{N}} \in X$ is called a *Cauchy* sequence if

Proposition

Let (X, d) be a metric space, and let $(x_n)_{n \in \mathbb{N}}$ be a convergent sequence in X. Then $(x_n)_{n \in \mathbb{N}}$ is Cauchy.

Proof.

Definition

A metric space where every Cauchy sequence converges (to a point in the space) is called *complete*.

Proposition

Let (X, d) be a metric space, and let $Y \subseteq X$.

- (i) If X is complete and if Y is closed in X, then Y is complete.
- (ii) If Y is complete, then it is closed in X.

Proof.

Subsequences

Definition

Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in a metric space (X, d). Let $(n_k)_{k \in \mathbb{N}}$ be a sequence of natural numbers with $n_1 < n_2 < \cdots$. The sequence $(x_{n_k})_{k \in \mathbb{N}}$ is called a *subsequence* of $(x_n)_{n \in \mathbb{N}}$. If $(x_{n_k})_{k \in \mathbb{N}}$ converges to $x \in X$, we call x a *subsequential limit*.

 $((-1)^n)_{n \in \mathbb{N}}$

Proposition

A sequence $(x_n)_{n \in \mathbb{N}}$ in a metric space (X, d) converges to $x \in X$ if and only if every subsequence of $(x_n)_{n \in \mathbb{N}}$ also converges to x.

Proof.

Proof continued

Continuity

Definition

Let (X, d_X) and (Y, d_Y) be metric spaces, let $x_0 \in X$, and let $f : X \to Y$. f is continuous at x_0 if for every sequence $(x_n)_{n \in \mathbb{N}}$ in X that converges to x_0 , we have $\lim_{n\to\infty} f(x_n) = f(x_0)$.

We say that f is continuous if it is continuous at every point in X.

Theorem

Let (X, d_X) and (Y, d_Y) be metric spaces, let $x_0 \in X$, and let $f : X \to Y$. The following are equivalent:

- (i) f is continuous at x_0
- (ii) for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0)) < \epsilon$ for all $x \in X$ with $d_X(x, x_0) < \delta$
- (iii) for each $\epsilon > 0$, there is $\delta > 0$ such that $B_{\delta}(x_0) \subseteq f^{-1}(B_{\epsilon}(f(x_0)))$

(i) f is continuous at x_0 (ii) for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0)) < \epsilon$ for all $x \in X$ with $d_X(x, x_0) < \delta$

Proof. (i) \Rightarrow (ii)	

(i) f is continuous at x_0 (ii) for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0)) < \epsilon$ for all $x \in X$ with $d_X(x, x_0) < \delta$ (iii) for each $\epsilon > 0$, there is $\delta > 0$ such that $B_{\delta}(x_0) \subseteq f^{-1}(B_{\epsilon}(f(x_0)))$

Proof continued $(ii) \Rightarrow (iii)$ $(iii) \Rightarrow (i)$

Corollary

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f : X \to Y$. The following are equivalent:

(i) f is continuous (ii) if $U \subseteq Y$ is open, then $f^{-1}(U)$ is open (iii) if $F \subseteq Y$ is closed, then $f^{-1}(F)$ is closed

We need the following results about sets and functions: Let X and Y be sets and $f : X \to Y$. Let $A, B \subseteq Y$. Then

$$A \subseteq B \implies f^{-1}(A) \subseteq f^{-1}(B)$$
$$P = f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$$

Proof.

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f : X \to Y$. (i) \Rightarrow (ii):

Proof continued

 $\text{(ii)}\Rightarrow\text{(i)}$

 $(\text{ii}) \Rightarrow (\text{iii})$

 $\text{(iii)}\Rightarrow\text{(ii)}$

Definition

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f : X \to Y$.

- f is uniformly continuous if for all $\epsilon > 0$, there exists $\delta > 0$ such that for every $x_1, x_2 \in X$ with $d_X(x_1, x_2) < \delta$, we have $d_Y(f(x_1), f(x_2))) < \epsilon$
- f is Lipschitz continuous if there exists a K > 0 such that for every $x_1, x_2 \in X$ we have $d_Y(f(x_1), f(x_2))) \leq K d_X(x_1, x_2)$

Proposition

```
Let (X, d_X) and (Y, d_Y) be metric spaces and let f : X \to Y.
```

f is Lipschitz continuous \Rightarrow f is uniformly continuous \Rightarrow f is continuous

Proof is one of your exercises.

Contraction Mapping Theorem

Definition

Let (X, d) be a metric space and let $f : X \to X$. We say that $x^* \in X$ is a *fixed point* of f if $f(x^*) = x^*$.

Definition

Let (X, d) be a metric space and let $f : X \to X$. f is a *contraction* if there exists a constant $k \in [0, 1)$ such that for all $x, y \in X$, $d(f(x), f(y)) \le kd(x, y)$.

Observe that a function is a contraction if and only if it is Lipschitz continuous with constant K < 1.

Theorem (Contraction Mapping Theorem)

Suppose that $f : X \to X$ is a contraction and the metric space X is complete. Then f has a unique fixed point x^* .

Example

Let $f: \left[-\frac{1}{3}, \frac{1}{3}\right] \to \left[-\frac{1}{3}, \frac{1}{3}\right]$ be defined by the mapping $x \mapsto x^2$. Assume we use the standard Euclidean metric, d(x, y) = |x - y|. f has a unique fixed point because

References

Charles C. Pugh (2015). *Real Mathematical Analysis*. Undergraduate Texts in Mathematics. https://link-springer-com.myaccess.library.utoronto.ca/book/10.1007/978-3-319-17771-7

Runde ,Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Zwiernik, Piotr (2022). *Lecture notes in Mathematics for Economics and Statistics*. url: http://84.89.132.1/ piotr/docs/RealAnalysisNotes.pdf

