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Outline

® Sequences

® Cauchy sequences
® subsequences

® Continuous functions
® Contractions

® Equivalence of metrics
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Sequences

Definition (Sequence)

Let (X, d) be a metric space. A sequence is an ordered list of points x,, n € N, in X,
denoted (x,)nen. We say that a sequence (x,)nen converges to a point x € X if
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Let (X, d) be a metric space, and let A C X. Then A is equal to the set of points in X
which are limits of a sequence in A.
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Proof continued
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A set F C X, where (X, d) is a metric space, is closed if and only if every sequence in
F which converges in X converges to a point in F.
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Cluster points of a set

Definition
Let (X, d) be a metric space and A C X. A point x € X is a_cluster point of A (also

NG

called accumulation point) if for every € > 0, B.(x) contains many points

in A.
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x € X is a cluster point of A C X where (X, d) is a metric space if and only if there

exists a sequence of points x, € A, n € N, such that x, — x. ‘
v
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Combining the previous result with the limit characterization of closure gives the
following;:

For AC X, (X, d) a metric space, we have

A= AU{x € X : xis a cluster point of A}.
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Cauchy sequences

Definition (Cauchy sequence)

Let (X, d) be a metric space. A sequence denoted (xp)nen € X is called a Cauchy
sequence if
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Let (X, d) be a metric space, and let (x,)ncn be a convergent sequence in X. Then
(xn)nen is Cauchy.
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Definition
A metric space where every Cauchy sequence converges (to a point in the space) is

called complete.
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Let (X, d) be a metric space, and let Y C X.
(i) If X is complete and if Y is closed in X, then Y is complete.

(i) If Y is complete, then it is closed in X.
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Subsequences

Q:s;“k

Definition
Let (xn)nen be a sequence in a metric space (X, d). Let (nk)ken be a sequence of
natural numbers with n; < ny < ---. The sequence (xp, )ken is called a subsequence

of (Xn)nen- If (xn,)ken converges to x € X, we call x a subsequential limit.
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A sequence (xp)nen in @ metric space (X, d) converges to x € X if and only if every
subsequence of (x,)nen also converges to x.
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Proof continued
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Continuity

Definition

Let (X, dx) and (Y, dy) be metric spaces, let xo € X, and let f : X — Y. f is
continuous at xp if for every sequence (xp)nen in X that converges to xp, we have

limp—00 f(xn) = f(x0)-

We say that f is continuous if it is continuous at every point in X.
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Let (X,dx) and (Y, dy) be metric spaces, let xo € X, and let f : X — Y. The
following are equivalent:

(i) f is continuous at xp
(ii) for all e > 0, there exists & > 0 such that dy(f(x), f(x0))) < € for all x € X with
dx(x,x0) < 9
(iii) for each € > 0, there is § > 0 such that Bs(xp) C f~1(B.(f(x0)))
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(i) f is continuous at xg
(ii) for all € > 0, there exists § > 0 such that dy(f(x), f(xp))) < € for all x € X with
ndx(X,Xo) <6
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(i) f is continuous at xg

(i) for all € > 0, there exists § > 0 such that dy(f(x),f(x))) < € for all x € X with
dx(x,x0) < 9

(iii) for each € > 0, there is § > 0 such that Bs(xo) C f~}(B.(f(x0)))
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Let (X, dx) and (Y, dy) be metric spaces and let ¥ : X — Y. The following are
equivalent:

(i) f is continuous
(i) if U C Y is open, then f~1(U) is open
(i) if F C Y is closed, then f~1(F) is closed
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We need the following results about sets and functions:
Let X and Y besetsand f : X — Y. Let AABC Y. Then
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Let (X, dx) and (Y, dy) be metric spaces and let f : X — Y.
(i) = (ii): %U‘?@D% £ 15 conNuous (o every powt n XX
avd \ex WEN, Led el Nt e W.
gl.‘f\UL U TS open y 2e30 3L t@@x\wgk}w
%%\o_ ?r Tlf\m(}\\BJ gg Db ¢ &, gé LrX) £ €= \6% @b
S, (FO ) Uy £7' (R (£0xY) &4 U&\
s Soc e QCG;C‘LU«\ 2L ¢SO0 s &
Gl Beo G & £ (& L.Q O‘Bﬁ\ £~ LU/\A

July 15, 2022 21/29

%ﬁ




oA W g cpe

Proof continued
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Definition
Let (X, dx) and (Y, dy) be metric spaces and let £ : X — Y.
® f is uniformly continuous if for all € > 0, there exists § > 0 such that for every
x1,x2 € X with dx(x1,x2) < 0, we have dy(f(x1),f(x2))) <€

® fis Lipschitz continuous if there exists a K > 0 such that for every x3,xo € X we
have dy (f(x1),f(x2))) < Kdx(x1, x2)

Let (X, dx) and (Y, dy) be metric spaces and let f : X — Y.

f is Lipschitz continuous = f is uniformly continuous = f is continuous

Proof is one of your exercises.
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Contraction Mapping Theorem

Definition
Let (X, d) be a metric space and let f : X — X. We say that x* € X is a fixed point
of £ if F(x*) = x*.

Definition
Let (X, d) be a metric space and let f : X — X. f is a contraction if there exists a
constant k € [0, 1) such that for all x,y € X, d(f(x), f(y))) < kd(x, y).

\,

Observe that a function is a contraction if and only if it is Lipschitz continuous with
constant K < 1.

Theorem (Contraction Mapping Theorem)

Suppose that f : X — X is a contraction and the metric space X is complete. Then f
has a unique fixed point x*.
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Let f: [ 3 %] — [ 33 —] be defined by the mapping x — x°. Assume we use the

standard Euclidean metric, d(x,y) = |[x — y|. f has a unique fixed point because
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