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Last time

Finished our discussion of open and closed sets:

® |ntroduced a cluster points of a set:
x € X is a cluster point of A if for every ¢ > 0, B.(x) contains infinitely many

points in A.

® Sequence characterization of a closed set:
A set F C X, where (X, d) is a metric space, is closed if and only if every
sequence in F which converges in X converges to a point in F.
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Last time

Discussed sequences, which includes Cauchy sequences and SUbsequen/CE?;ﬂZ . \\&RX\L&
e Convergent sequence: x, — x < Ve > 03 n. € N s.t. d(xp,x) < € for all n > n,

e Cauchy sequence: Ve > 0 3n. € N s.t. d(xp, xm) < € for all n,m > n,

Proved that a convergent sequence is Cauchy

Discussed complete metric spaces, where all Cauchy sequences converge (like R
with the usual metric, absolute value)

Proved that a sequence converges to x if and only if all subsequences converge to
X
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Last time

Discussed continuous functions:

® Showed that these three definitions of continuous are equivalent in metric spaces:

f: X — Y is continuous where (X, dx) and (Y, dy) are metric spaces <
o if for every xg € X, for every sequence (x,)nen in X that converges to xp, we have
limp— oo F(xn) = f(x0)-
® if for every xp € X, for all € > 0, there exists 6 > 0 such that dy(f(x), f(x))) < €
for all X with d )
or all x € X with dx(x,xp) < V1L el R
e if U C Y is open, then f~1(U) is open

® Briefly discussed other types of continuity (uniform, Lipschitz) and the
Contraction Mapping Theorem
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Outline for today

® Finish metric spaces
® Equivalent metrics

® A few extra topics on R, including lim sup and lim inf

® Start topology
® Basic definitions

k4
3 Statistical Sciences
& UNIVERSITY OF TORONTO

July 19, 2022 5/28



Equivalent metrics

Definition (Equivalent metrics)

Two metrics di and d» on a set X are equivalent if the identity maps from (X, d;) to
(X, dz) and from (X, d») to (X, d1) are continuous.

Av: v s

Two metrics dq, d» on a set X are equivalent if and only if they have the same open
sets or the same closed sets.
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Definition
Two metrics di and d» on a set X are strongly equivalent if for every x,y € X, there
exists constants & > 0 and 8 > 0 such

ocdl(x,y) < d2(X7y) < Bdl(xay)‘

If two metrics are strongly equivalent then they are equivalent. The proof of this is one
of the exercises.
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We show that the Euclidean distance (induced by 2-norm) and the metric induced by
the oco-norm are equivalent on R".
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Can you think of an example that we've seen of a metric that isn't equwalent Lche
= Euclidean metric?
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Right and left continuous

Recall: f: R — R is continuous at xg € R if for all € > 0 there exists a § > 0 such that
[x0 — y| < & implies |f(x0) — f(y)| <.

L/‘) o L'\(O— (é :§X°_< be’\'%
Definition
Let f: R — R.

® f is left continuous at xg € R if for all € > 0 there exists a § > 0, such
|f(x0) — f(x)| < € whenever xg — § < x < xp.

® f is right continuous at xp € R if for all € > 0 there exists a § > 0, such
|f(x0) — f(x)| < € whenever xp < x < xp + 9.
We say that f is left continuous if it is left continuous at all points in the domain, and
similar for right continuous.
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A function f: R — R is continuous if and only if it is left and right continuous.
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Proof continued
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Bounded sequences and monotone convergence

Definition

Let (xn)nen be a sequence in R. We call (x,)nen bounded if there exists an M > 0
such that |x,| < M for all n € N.

Theorem (Monotone convergence theorem)
(i) Suppose (xn)nen is an increasing sequence, i.e. x, < xp+1 for all n € N, and that

it is bounded (above). Then the sequence converges. Furthermore,
limp—s00 Xn = SUP,cr Xn, Where sup,cy Xp = sup{x, : n € N}.
(ii) Suppose (xn)neN is a decreasing sequence, i.e. x, > xp+1 for all n € N, which is
bounded (below). Then the sequence converges and
limp—00 Xn = infpen X, := inf{x, : n € N}
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Convention: supA = oo if A C R is not bounded above and inf A= —oc if A is not
bounded below.

If AC B C R is non-empty, then inf A < supA, supA <supB, and inf A > inf B.

The proof of this follows from the definition of greatest lower and least upper bound.
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Definition
Let (xn)nen be a sequence in R. We define the limit superior of (xp)nen as

limsup x, := lim sup x.
e TR

Similarly we define the limit inferior of (xn)nen as

—
liminfx, := lim inf xg.
n—o0 n—o0 k>n

If the sequence (xp)nen is not bounded above, then limsup,_, . x, = co. Similarly, if
the sequence (x,)nen is not bounded below, then liminf,_,o x, = —o0.
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Let (xn)nen be a sequence in R.
® The sequence of suprema, s, = sup,~, Xk, is decreasing and the sequence of
infima, i, = infy>, X, is increasing.

® The limit superior and the limit inferior of a bounded sequence always exist and
are finite.

The first part is true by the previous Lemma. The second follows by the Monotone
Convergence Theorem. O

&
3 Statistical Sciences
& UNIVERSITY OF TORONTO

July 19, 2022 15 /28



Let (xn)nen be a sequence in R. Then the sequence converges to x € R if and only if
limsup,_,oo Xn = X = liminf,_ o0 Xp.
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Proof continued
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Proof continued
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We can extend this easily to a sequence of functions f,: X — R as follows:

Define f = limsup,_,., fn to be the function defined pointwise by
f(x) = limsup,_,(f(x)) and similar for the limit inferior.

There also exists a set theoretic version in terms of unions and intersections which you
will encounter in probability.
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Topology
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® et X be a set. If X is not a metric space, can we still have open and closed sets?

® One can think of a topology on X as a specification of what subsets of X are open

Let 7 C P(X). We call T a topology on X if the following holds:
(i) 0,XeT
(i) Let A be an arbitrary index set. If U, € T for a € A, then | J,caUa €T (T is
closed under taking arbitrary unions)

(iii) Let ne N. If Uy,..., U, € T, then N_; U; € T (T is closed under taking finite
intersections)

If U e T, wecall Uopen. We call UC X closed, if U € T. We call (X,T) a
topological space.
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For a set X, the following 7 C P(X) are examples of topologies on X.
e Trivial topology: T = {0, X},
® Discrete topology: T = P(X),

® Let X be an infinite set. Then, 7 = {U C X : U is finite} U () defines a
topology on X.

® Topology induced by a metric: i.e. if d is a metric on X we can define

Ta ={U C X | Vx € U Je > 0 such that B.(x) C U}.

The discrete topology is also induced by a metric, can you guess which one?

S Statistical Sciences
¥ UNIVERSITY OF TORONTO

July 19, 2022 21/28



Given a topological space (X,7) and a subset Y C X, we can restrict the topology on
X to Y which leads to the next definition.

Definition (Relative topology)

Given a topological space (X,7) and an arbitrary non-empty subset Y C X, we define
the relative topology on Y as follows

Tly={UnY: UeT}.
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Let (X, 7) be a topological space and let A C X be any subset.
o The interior of Ais A = {aeA:JUeTst. UCAand ac U}.
® The closure of Ais A:={x € X: VU € T with x € U,UN A # 0}.

® The boundary of A is
A ={xeX:VUeT withxe U, UNA# D and UN A £ (}.
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® The interior of A is A := {aeA:qUeTst. UCAand ac U}.
® The closure of Ais A:={x € X: VU € T with x € U,UNA # (}}.

® The boundary of Ais QA= {x e X: VU € T withx e U, UNA# ) and UnN A° # (}.

Let X ={a,b,c} and T = {0, {a}, {b},{a, b}, X}. Then
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Let (X, T) be a topological space and A C X. Then,

A= ﬂ{F: F is closed and A C F}.
TR
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Proof continued
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Similarly, one can show A = |J{U : U is open and U C A}. Hence, we see that the
interior of A is the largest open set contained in A and the closure is the smallest
closed set that contains A.
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Next time

® Finish topology
® Dense subsets
® Compactness
® Continuity

® Start linear algebra
® Vector spaces and subspaces
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