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Metric spaces &



Last time

Finished our discussion of open and closed sets:

• Introduced a cluster points of a set:
x 2 X is a cluster point of A if for every ✏ > 0, B✏(x) contains infinitely many
points in A.

• Sequence characterization of a closed set:
A set F ✓ X , where (X , d) is a metric space, is closed if and only if every
sequence in F which converges in X converges to a point in F .
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Last time

Discussed sequences, which includes Cauchy sequences and subsequences:

• Convergent sequence: xn ! x , 8✏ > 0 9 n✏ 2 N s.t. d(xn, x) < ✏ for all n � n✏

• Cauchy sequence: 8✏ > 0 9 n✏ 2 N s.t. d(xn, xm) < ✏ for all n,m � n✏

• Proved that a convergent sequence is Cauchy

• Discussed complete metric spaces, where all Cauchy sequences converge (like R
with the usual metric, absolute value)

• Proved that a sequence converges to x if and only if all subsequences converge to
x
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Last time

Discussed continuous functions:

• Showed that these three definitions of continuous are equivalent in metric spaces:

f : X ! Y is continuous where (X , dX ) and (Y , dY ) are metric spaces ,
• if for every x0 2 X , for every sequence (xn)n2N in X that converges to x0, we have

limn!1 f (xn) = f (x0).

• if for every x0 2 X , for all ✏ > 0, there exists � > 0 such that dY (f (x), f (x0))) < ✏
for all x 2 X with dX (x , x0) < �

• if U ✓ Y is open, then f �1(U) is open

• Briefly discussed other types of continuity (uniform, Lipschitz) and the
Contraction Mapping Theorem
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Outline for today

• Finish metric spaces
• Equivalent metrics

• A few extra topics on R, including lim sup and lim inf

• Start topology
• Basic definitions
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Equivalent metrics

Definition (Equivalent metrics)

Two metrics d1 and d2 on a set X are equivalent if the identity maps from (X , d1) to
(X , d2) and from (X , d2) to (X , d1) are continuous.

Proposition

Two metrics d1, d2 on a set X are equivalent if and only if they have the same open
sets or the same closed sets.
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Definition
Two metrics d1 and d2 on a set X are strongly equivalent if for every x , y 2 X , there
exists constants ↵ > 0 and � > 0 such

↵d1(x , y)  d2(x , y)  �d1(x , y).

If two metrics are strongly equivalent then they are equivalent. The proof of this is one
of the exercises.
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Example

We show that the Euclidean distance (induced by 2-norm) and the metric induced by
the 1-norm are equivalent on Rn.

Can you think of an example that we’ve seen of a metric that isn’t equivalent to the
Euclidean metric?
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Right and left continuous

Recall: f : R ! R is continuous at x0 2 R if for all ✏ > 0 there exists a � > 0 such that
|x0 � y | < � implies |f (x0)� f (y)| < ✏.

Definition
Let f : R ! R.

• f is left continuous at x0 2 R if for all ✏ > 0 there exists a � > 0, such
|f (x0)� f (x)| < ✏ whenever x0 � � < x < x0.

• f is right continuous at x0 2 R if for all ✏ > 0 there exists a � > 0, such
|f (x0)� f (x)| < ✏ whenever x0 < x < x0 + �.

We say that f is left continuous if it is left continuous at all points in the domain, and
similar for right continuous.
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Proposition

A function f : R ! R is continuous if and only if it is left and right continuous.

Proof.
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Proof continued
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Bounded sequences and monotone convergence

Definition

Let (xn)n2N be a sequence in R. We call (xn)n2N bounded if there exists an M > 0
such that |xn| < M for all n 2 N.

Theorem (Monotone convergence theorem)

(i) Suppose (xn)n2N is an increasing sequence, i.e. xn  xn+1 for all n 2 N, and that
it is bounded (above). Then the sequence converges. Furthermore,
limn!1 xn = supn2N xn, where supn2N xn := sup{xn : n 2 N}.

(ii) Suppose (xn)n2N is a decreasing sequence, i.e. xn � xn+1 for all n 2 N, which is
bounded (below). Then the sequence converges and
limn!1 xn = infn2N xn := inf{xn : n 2 N}.
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Convention: supA = 1 if A ✓ R is not bounded above and inf A = �1 if A is not
bounded below.

Lemma
If A ✓ B ✓ R is non-empty, then inf A  supA, supA  supB , and inf A � inf B .

The proof of this follows from the definition of greatest lower and least upper bound.
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Definition

Let (xn)n2N be a sequence in R. We define the limit superior of (xn)n2N as

lim sup
n!1

xn := lim
n!1

sup
k�n

xk .

Similarly we define the limit inferior of (xn)n2N as

lim inf
n!1

xn := lim
n!1

inf
k�n

xk .

If the sequence (xn)n2N is not bounded above, then lim supn!1 xn = 1. Similarly, if
the sequence (xn)n2N is not bounded below, then lim infn!1 xn = �1.
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Proposition

Let (xn)n2N be a sequence in R.
• The sequence of suprema, sn = supk�n xk , is decreasing and the sequence of
infima, in = infk�n xk , is increasing.

• The limit superior and the limit inferior of a bounded sequence always exist and
are finite.

Proof.
The first part is true by the previous Lemma. The second follows by the Monotone
Convergence Theorem.

July 19, 2022 15 / 28



Theorem

Let (xn)n2N be a sequence in R. Then the sequence converges to x 2 R if and only if
lim supn!1 xn = x = lim infn!1 xn.

Proof.
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Proof continued
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Proof continued
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We can extend this easily to a sequence of functions fn : X ! R as follows:

Define f = lim supn!1 fn to be the function defined pointwise by
f (x) = lim supn!1(fn(x)) and similar for the limit inferior.

There also exists a set theoretic version in terms of unions and intersections which you
will encounter in probability.
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Topology

July 19, 2022 19 / 28



• Let X be a set. If X is not a metric space, can we still have open and closed sets?

• One can think of a topology on X as a specification of what subsets of X are open

Definition

Let T ✓ P(X ). We call T a topology on X if the following holds:

(i) ;,X 2 T
(ii) Let A be an arbitrary index set. If U↵ 2 T for ↵ 2 A, then

S
↵2A U↵ 2 T (T is

closed under taking arbitrary unions)

(iii) Let n 2 N. If U1, . . . ,Un 2 T , then
Tn

i=1 Ui 2 T (T is closed under taking finite
intersections)

If U 2 T , we call U open. We call U ✓ X closed, if Uc 2 T . We call (X , T ) a
topological space.
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Example

For a set X , the following T ✓ P(X ) are examples of topologies on X .

• Trivial topology: T = {;,X},
• Discrete topology: T = P(X ),

• Let X be an infinite set. Then, T = {U ✓ X : Uc is finite} [ ; defines a
topology on X .

• Topology induced by a metric: i.e. if d is a metric on X we can define

Td = {U ✓ X | 8x 2 U 9✏ > 0 such that B✏(x) ✓ U}.

The discrete topology is also induced by a metric, can you guess which one?
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Given a topological space (X , T ) and a subset Y ✓ X , we can restrict the topology on
X to Y which leads to the next definition.

Definition (Relative topology)

Given a topological space (X , T ) and an arbitrary non-empty subset Y ✓ X , we define
the relative topology on Y as follows

T |Y = {U \ Y : U 2 T }.
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Definition

Let (X , T ) be a topological space and let A ✓ X be any subset.

• The interior of A is
�
A := {a 2 A : 9U 2 T s.t. U ✓ A and a 2 U}.

• The closure of A is A := {x 2 X : 8U 2 T with x 2 U,U \ A 6= ;}.
• The boundary of A is
@A := {x 2 X : 8U 2 T with x 2 U, U \ A 6= ; and U \ Ac 6= ;}.
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• The interior of A is
�
A := {a 2 A : 9U 2 T s.t. U ✓ A and a 2 U}.

• The closure of A is A := {x 2 X : 8U 2 T with x 2 U,U \ A 6= ;}.
• The boundary of A is @A := {x 2 X : 8U 2 T with x 2 U, U \ A 6= ; and U \ Ac 6= ;}.

Example

Let X = {a, b, c} and T = {;, {a}, {b}, {a, b},X}. Then
•

�
{a} =

•
�

{c} =

• {a} =

• {c} =

July 19, 2022 24 / 28

{a} a c- {a}
.
{arb} ,X

∅
b

c- {b}
,
Eaob},X

{a ,c}
C
c- ×

{ c}



Proposition

Let (X , T ) be a topological space and A ✓ X . Then,

A =
\

{F : F is closed and A ✓ F}.

Proof.
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Proof continued

Similarly, one can show
�
A =

S
{U : U is open and U ✓ A}. Hence, we see that the

interior of A is the largest open set contained in A and the closure is the smallest
closed set that contains A.
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Next time

• Finish topology
• Dense subsets

• Compactness

• Continuity

• Start linear algebra
• Vector spaces and subspaces
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