Metric spaces & Module 5: Topology Operational math bootcamp

Emma Kroell

University of Toronto

July 19, 2022

Last time

Finished our discussion of open and closed sets:

- Introduced a cluster points of a set:
 x ∈ X is a *cluster point* of A if for every ε > 0, B_ε(x) contains **infinitely** many points in A.
- Sequence characterization of a closed set:
 A set F ⊆ X, where (X, d) is a metric space, is closed if and only if every sequence in F which converges in X converges to a point in F.

Last time

Discussed sequences, which includes Cauchy sequences and subsequences: $\sqrt{2\pi}\sqrt{2\xi}$

- Convergent sequence: $x_n \to x \Leftrightarrow \forall \epsilon > 0 \exists n_{\epsilon} \in \mathbb{N} \text{ s.t. } d(x_n, x) < \epsilon \text{ for all } n \geq n_{\epsilon}$
- Cauchy sequence: $\forall \epsilon > 0 \exists n_{\epsilon} \in \mathbb{N} \text{ s.t. } d(x_n, x_m) < \epsilon \text{ for all } n, m \geq n_{\epsilon}$
- Proved that a convergent sequence is Cauchy
- Discussed complete metric spaces, where all Cauchy sequences converge (like \mathbb{R} with the usual metric, absolute value)
- Proved that a sequence converges to x if and only if all subsequences converge to x

Last time

Discussed continuous functions:

- Showed that these three definitions of continuous are equivalent in metric spaces:
 - f:X
 ightarrow Y is *continuous* where (X,d_X) and (Y,d_Y) are metric spaces \Leftrightarrow
 - if for every $x_0 \in X$, for every sequence $(x_n)_{n \in \mathbb{N}}$ in X that converges to x_0 , we have $\lim_{n \to \infty} f(x_n) = f(x_0)$.
 - if for every $x_0 \in X$, for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0)) < \epsilon$ for all $x \in X$ with $d_X(x, x_0) < \delta$
 - if $U \subseteq Y$ is open, then $f^{-1}(U)$ is open
- Briefly discussed other types of continuity (uniform, Lipschitz) and the Contraction Mapping Theorem

Outline for today

- Finish metric spaces
 - Equivalent metrics
 - A few extra topics on $\mathbb R,$ including lim sup and lim inf
- Start topology
 - Basic definitions

Definition (Equivalent metrics)

Two metrics d_1 and d_2 on a set X are *equivalent* if the identity maps from (X, d_1) to (X, d_2) and from (X, d_2) to (X, d_1) are continuous.

$$\exists_X: X \mapsto X \nearrow$$

Proposition

Two metrics d_1 , d_2 on a set X are equivalent if and only if they have the same open sets or the same closed sets.

Definition

Two metrics d_1 and d_2 on a set X are *strongly equivalent* if for every $x, y \in X$, there exists constants $\alpha > 0$ and $\beta > 0$ such

 $\alpha d_1(x,y) \leq d_2(x,y) \leq \beta d_1(x,y).$

If two metrics are strongly equivalent then they are equivalent. The proof of this is one of the exercises.

Example

÷

We show that the Euclidean distance (induced by 2-norm) and the metric induced by the ∞ -norm are equivalent on \mathbb{R}^n .

$$\begin{aligned} \|x-y\|_{\Theta} &= \sqrt{\frac{2}{3}}(x-y_{i})^{\Theta}, \quad \|x-y\|_{\Theta} &= \max_{j=1,\dots,n} \|x_{j}-y_{j}\|_{I} \\ \|x-y\|_{\Theta} &= \sqrt{\frac{2}{3}}(x-y_{i})^{\Theta} \leq \sqrt{n} \max_{j=1,\dots,n} (x_{j}-y_{i})^{\Theta} = \sqrt{n} \max_{j=1,\dots,n} \|x_{j}-y_{j}\|_{O} \\ &= \sqrt{n} \|x-y\|_{\Theta} \\ \|x-y\|_{\Theta} &= \max_{j=1,\dots,n} (x_{j}-y_{j}) = \sqrt{\max_{j=1,\dots,n} (x_{j}-y_{j})^{\Theta}} \leq \sqrt{\frac{2}{3}}(x_{j}-y_{j})^{\Theta} \\ &= \sqrt{n} \|x-y\|_{\Theta} \end{aligned}$$
Can you think of an example that we've seen of a metric that isn't equivalent to the Euclidean metric?

Right and left continuous

Recall: $f : \mathbb{R} \to \mathbb{R}$ is continuous at $x_0 \in \mathbb{R}$ if for all $\epsilon > 0$ there exists a $\delta > 0$ such that $|x_0 - y| < \delta$ implies $|f(x_0) - f(y)| < \epsilon$.

Definition Let $f : \mathbb{R} \to \mathbb{R}$. • f is left continuous at $x_0 \in \mathbb{R}$ if for all $\epsilon > 0$ there exists a $\delta > 0$, such $|f(x_0) - f(x)| < \epsilon$ whenever $x_0 - \delta < x < x_0$. • f is right continuous at $x_0 \in \mathbb{R}$ if for all $\epsilon > 0$ there exists a $\delta > 0$, such $|f(x_0) - f(x)| < \epsilon$ whenever $x_0 < x < x_0$.

We say that f is left continuous if it is left continuous at all points in the domain, and similar for right continuous.

Proposition

A function $f : \mathbb{R} \to \mathbb{R}$ is continuous if and only if it is left and right continuous.

Proof.

Proof continued

÷

Bounded sequences and monotone convergence

Definition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . We call $(x_n)_{n\in\mathbb{N}}$ bounded if there exists an M > 0 such that $|x_n| < M$ for all $n \in \mathbb{N}$.

Theorem (Monotone convergence theorem)

- (i) Suppose (x_n)_{n∈ℕ} is an increasing sequence, i.e. x_n ≤ x_{n+1} for all n ∈ ℕ, and that it is bounded (above). Then the sequence converges. Furthermore, lim_{n→∞} x_n = sup_{n∈ℕ} x_n, where sup_{n∈ℕ} x_n := sup{x_n : n ∈ ℕ}.
- (ii) Suppose (x_n)_{n∈ℕ} is a decreasing sequence, i.e. x_n ≥ x_{n+1} for all n ∈ ℕ, which is bounded (below). Then the sequence converges and lim_{n→∞} x_n = inf_{n∈ℕ} x_n := inf{x_n : n ∈ ℕ}.

Convention: sup $A = \infty$ if $A \subseteq \mathbb{R}$ is not bounded above and $\inf A = -\infty$ if A is not bounded below.

Lemma

If $A \subseteq B \subseteq \mathbb{R}$ is non-empty, then $\inf A \leq \sup A$, $\sup A \leq \sup B$, and $\inf A \geq \inf B$.

The proof of this follows from the definition of greatest lower and least upper bound.

Definition

Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R} . We define the *limit superior* of $(x_n)_{n \in \mathbb{N}}$ as $\lim_{n \to \infty} \sup x_n := \lim_{n \to \infty} \sup_{k \ge n} x_k.$ Similarly we define the *limit inferior* of $(x_n)_{n \in \mathbb{N}}$ as $\lim_{n \to \infty} \inf x_n := \lim_{n \to \infty} \inf_{k \ge n} x_k.$

If the sequence $(x_n)_{n \in \mathbb{N}}$ is not bounded above, then $\limsup_{n \to \infty} x_n = \infty$. Similarly, if the sequence $(x_n)_{n \in \mathbb{N}}$ is not bounded below, then $\liminf_{n \to \infty} x_n = -\infty$.

Proposition

Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R} .

- The sequence of suprema, s_n = sup_{k≥n} x_k, is decreasing and the sequence of infima, i_n = inf_{k≥n} x_k, is increasing.
- The limit superior and the limit inferior of a bounded sequence always exist and are finite.

Proof.

The first part is true by the previous Lemma. The second follows by the Monotone Convergence Theorem.

Theorem

Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R} . Then the sequence converges to $x \in \mathbb{R}$ if and only if $\limsup_{n \to \infty} x_n = x = \liminf_{n \to \infty} x_n$.

Proof.

Notation:
$$in := \inf_{\substack{K \ge n}} x_K \notin S_n := \sup_{\substack{K \ge n}} x_K$$
, nell
Suplose $x_n \Rightarrow x$, $x \in \mathbb{R}$. Let $\varepsilon > 0$. By definition of $x_n \Rightarrow x$,
 $\exists N \in \mathbb{N}$ s.t for all $n \ge N$, $|x - x_n| \ge \xi$, i.e. $x - \varepsilon < x_n \le x + \varepsilon$
 $x - \varepsilon < x_n + n \ge N$, $x - \varepsilon$ is a lower bound for the
set $\varepsilon x_n : n \ge N \le = \infty \times - \varepsilon \le i_N$
Similarly, $x_n < x + \varepsilon + N \ge S_N \le S_N \le X + \varepsilon$.

Proof continued

$$\chi - \xi \leq i_N \leq \lim_{n \to \infty} \inf_{\substack{n \to \infty \\ n \to \infty}} \inf_{\substack{n \to \infty \\ n \to \infty}} \inf_{\substack{n \to \infty \\ n \to \infty}} \int_{\substack{n \to$$

Proof continued

÷

Suppose
$$\limsup_{n \to \infty} x_n = x = \liminf_{n \to \infty} x_n$$
.
Let $\varepsilon > 0$.
Since $\limsup_{n \to \infty} x_n = \lim_{n \to \infty} x_n = x$, $\exists N_1 \in \mathbb{N} \times \mathbb{I}$
 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_n = x$, $\exists N_1 \in \mathbb{N} \times \mathbb{I}$
 $\lim_{n \to \infty} x_k \leq N_1$,
 $= x_k \leq N_1 \quad (x_k \in \mathbb{V} \times \mathbb{I} \times \mathbb{I})$
Similarly, $\exists N_2 \in \mathbb{N} \times \mathbb{I}$. $\lim_{n \to \infty} x_k \leq \mathbb{V} \times \mathbb{I}$
So $x - \varepsilon \leq \lim_{n \to \infty} c_{x_k} \quad \forall k \geq N_3$
Take $N = \max_{n \to \infty} \mathbb{I}$, $N_2 \in \mathbb{I}$.
We have $\forall k \geq N_1$, so $x_n \Rightarrow x$.

We can extend this easily to a sequence of functions $f_n \colon X \to \mathbb{R}$ as follows:

Define $f = \limsup_{n \to \infty} f_n$ to be the function defined pointwise by $f(x) = \limsup_{n \to \infty} (f_n(x))$ and similar for the limit inferior.

There also exists a set theoretic version in terms of unions and intersections which you will encounter in probability.

Topology

- Let X be a set. If X is not a metric space, can we still have open and closed sets?
- One can think of a topology on X as a specification of what subsets of X are open

Definition

Let $\mathcal{T} \subseteq \mathcal{P}(X)$. We call \mathcal{T} a *topology* on X if the following holds:

(i) $\emptyset, X \in \mathcal{T}$

- (ii) Let A be an arbitrary index set. If $U_{\alpha} \in \mathcal{T}$ for $\alpha \in A$, then $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}$ (\mathcal{T} is closed under taking arbitrary unions)
- (iii) Let $n \in \mathbb{N}$. If $U_1, \ldots, U_n \in \mathcal{T}$, then $\bigcap_{i=1}^n U_i \in \mathcal{T}$ (\mathcal{T} is closed under taking finite intersections)

If $U \in \mathcal{T}$, we call U open. We call $U \subseteq X$ closed, if $U^c \in \mathcal{T}$. We call (X, \mathcal{T}) a topological space.

Example

For a set X, the following $\mathcal{T} \subseteq \mathcal{P}(X)$ are examples of topologies on X.

- Trivial topology: $\mathcal{T} = \{\emptyset, X\}$,
- Discrete topology: $\mathcal{T} = \mathcal{P}(X)$,
- Let X be an infinite set. Then, T = {U ⊆ X : U^c is finite} ∪ Ø defines a topology on X.
- Topology induced by a metric: i.e. if d is a metric on X we can define

 $\mathcal{T}_d = \{ U \subseteq X \mid \forall x \in U \; \exists \epsilon > 0 \text{ such that } B_{\epsilon}(x) \subseteq U \}.$

The discrete topology is also induced by a metric, can you guess which one?

Given a topological space (X, \mathcal{T}) and a subset $Y \subseteq X$, we can restrict the topology on X to Y which leads to the next definition.

Definition (Relative topology)

Given a topological space (X, \mathcal{T}) and an arbitrary non-empty subset $Y \subseteq X$, we define the relative topology on Y as follows

$$\mathcal{T}|_{Y} = \{ U \cap Y : U \in \mathcal{T} \}.$$

Definition

Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$ be any subset.

- The interior of A is $\mathring{A} := \{a \in A : \exists U \in \mathcal{T} \text{ s.t. } U \subseteq A \text{ and } a \in U\}.$
- The *closure* of A is $\overline{A} := \{x \in X : \forall U \in \mathcal{T} \text{ with } x \in U, U \cap A \neq \emptyset\}.$
- The *boundary* of A is $\partial A := \{x \in X : \forall U \in \mathcal{T} \text{ with } x \in U, \ U \cap A \neq \emptyset \text{ and } U \cap A^c \neq \emptyset\}.$

- The interior of A is $\mathring{A} := \{ a \in A : \exists U \in \mathcal{T} \text{ s.t. } U \subseteq A \text{ and } a \in U \}.$
- The *closure* of A is $\overline{A} := \{x \in X : \forall U \in \mathcal{T} \text{ with } x \in U, U \cap A \neq \emptyset\}.$
- The boundary of A is $\partial A := \{x \in X : \forall U \in \mathcal{T} \text{ with } x \in U, U \cap A \neq \emptyset \text{ and } U \cap A^c \neq \emptyset\}.$

Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Then, $\overline{A} = \bigcap \{F : F \text{ is closed and } A \subseteq F\}.$ Proof. $A \subseteq A'$: We show the contrapositive, i.e. $(A')^{c} \subseteq (\overline{A})^{c}$ Let $x \in (A')^{c}$. Then $x \notin A'$. $(A')^{c}$ is open, and in teach it is an open set that contains X. Since A = A', A n(A') = Ø. : . K&A i.e. XEA

Proof continued

A' = A. We prove the contrapositive.
(A)= (A')'. Let
$$x \in (A)'$$
. Then $x \notin A$.
Then $\exists U$ open with $x \in U$ and $U \cap A = \emptyset$.
 $\Rightarrow A \leq U^{C}$. We know that U^{C} , by def ,
 $A' \leq U^{C}$. Since $x \notin U^{C}$, $k \notin A'$.
 $\therefore A' \leq A$.

Similarly, one can show $A = \bigcup \{U : U \text{ is open and } U \subseteq A\}$. Hence, we see that the interior of A is the largest open set contained in A and the closure is the smallest closed set that contains A.

Next time

- Finish topology
 - Dense subsets
 - Compactness
 - Continuity
- Start linear algebra
 - Vector spaces and subspaces

References

Jiří Lebl (2022). *Basic Analysis I*. Vol. 1. Introduction to Real Analysis. https://www.jirka.org/ra/realanal.pdf

Runde, Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

