Exercises for Module 6: Topology and Linear Algebra

1. Let (X, \mathcal{T}) be a topological space and $A \subseteq X$ be dense. Show that if $A \subseteq B \subseteq X$, then B is dense as well.
2. Let (X, \mathcal{T}) be a Hausdorff topological space. Show that the singleton $\{x\}$ is closed for all $x \in X$. Hint: Show that the complement is open.
3. Let $\left(X, \mathcal{T}_{X}\right),\left(Y, \mathcal{T}_{Y}\right)$ and $\left(Z, \mathcal{T}_{Z}\right)$ be topological spaces and let $f: X \rightarrow Y, g: Y \rightarrow Z$ be continuous. Show that $g \circ f: X \rightarrow Z$ is continuous as well.
4. Let (X, d) be a metric space and $K \subset X$ compact. Show that for all $\epsilon>0$ there exists $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subseteq K$ such that for all $y \in K$ we have $d\left(y, x_{i}\right)<\epsilon$ for some $i=1, \ldots, n$.
5. Suppose that $\alpha \in \mathbb{F}, \mathbf{v} \in V$, and $\alpha \mathbf{v}=\mathbf{0}$. Prove that $a=0$ or $\mathbf{v}=0$.
6. Prove the following: Let V be a vector space and let $U_{1}, U_{2} \subseteq V$ be subspaces. Then $U_{1} \cap U_{2}$ is also a subspace of V.
7. Let U_{1} and U_{2} be subspaces of a vector space V. Prove that $U_{1} \cup U_{2}$ is a subspace of V if and only if $U_{1} \subseteq U_{2}$ or $U_{2} \subseteq U_{1}$.
