Module 6: End of Topology, Start of Linear Algebra Operational math bootcamp

Emma Kroell
University of Toronto

July 20, 2022

Outline

- Finish topology
- Dense subsets
- Compactness
- Continuity
- Start linear algebra
- Vector spaces and subspaces

Last time

Definition (Topology)

Let $\mathcal{T} \subseteq \mathcal{P}(X)$. We call \mathcal{T} a topology on X if the following holds:
(i) $\emptyset, X \in \mathcal{T}$
(ii) Let A be an arbitrary index set. If $U_{\alpha} \in \mathcal{T}$ for $\alpha \in A$, then $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}$ (\mathcal{T} is closed under taking arbitrary unions)
(iii) Let $n \in \mathbb{N}$. If $U_{1}, \ldots, U_{n} \in \mathcal{T}$, then $\bigcap_{i=1}^{n} U_{i} \in \mathcal{T}$ (\mathcal{T} is closed under taking finite intersections)

If $U \in \mathcal{T}$, we call U open. We call $U \subseteq X$ closed, if $U^{c} \in \mathcal{T}$. We call (X, \mathcal{T}) a topological space.

Definition

Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$ be any subset.

- The interior of A is $\AA:=\{a \in A: \exists U \in \mathcal{T}$ s.t. $U \subseteq A$ and $a \in U\}$.
- The closure of A is $\bar{A}:=\{x \in X: \forall U \in \mathcal{T}$ with $x \in U, U \cap A \neq \emptyset\}$.
- The boundary of A is $\partial A:=\left\{x \in X: \forall U \in \mathcal{T}\right.$ with $x \in U, U \cap A \neq \emptyset$ and $\left.U \cap A^{c} \neq \emptyset\right\}$.

Density

Definition

Let (X, \mathcal{T}) be a topological space. A subset $A \subseteq X$ is called dense if $\bar{A}=X$.

Using the definition of closure, we see that $A \subseteq X$ is dense if and only if for all non-empty $U \in \mathcal{T}, U \cap A \neq \emptyset$.

Example

- The rationals \mathbb{Q} are dense in the reals \mathbb{R}.
- The only dense subset in $(X, \mathcal{P}(X))$ is X itself.
- Any non-empty subset is dense in $(X,\{\emptyset, X\})$.

Separability

Definition

A topological space (X, \mathcal{T}) is separable if it contains a countable dense subset.

Example

Hausdorff space

Definition

A topological space (X, \mathcal{T}) is called Hausdorff if for all $x \neq y \in X$ there exist open sets U_{x}, U_{y} with $x \in U_{x}$ and $y \in U_{y}$ such that $U_{x} \cap U_{y}=\emptyset$.

So in a Hausdorff space, we can separate any two elements using open sets.

Example

Let (X, d) be a metric space. Then $\left(X, \mathcal{T}_{d}\right)$ is Hausdorff, where \mathcal{T}_{d} is the topology induced by the metric d.

Example

Let X be an infinite set and $\mathcal{T}=\left\{U \subseteq X: U^{c}\right.$ is finite $\} \cup \emptyset$. Then (X, \mathcal{T}) is not Hausdorff.

Compactness

Definition

Let (X, \mathcal{T}) be a topological space and $K \subseteq X$.
A collection $\left\{U_{i}\right\}_{i \in I}$ of open sets is called open cover of K if $K \subseteq \cup_{i \in I} U_{i}$.
The set K is called compact if for all open covers $\left\{U_{i}\right\}_{i \in I}$ there exists a finite subcover, meaning there exists an $n \in \mathbb{N}$ and $\left\{U_{1}, \ldots, U_{n}\right\} \subseteq\left\{U_{i}\right\}_{i \in I}$ such that $K \subseteq \cup_{i=1}^{n} U_{i}$.

Example

Let $S \subseteq X$ where (X, \mathcal{T}) is a topological space. If S is finite, then it is compact.

Example

$(0,1)$ is not compact.

Proposition

Let (X, \mathcal{T}) be a topological space and take a non-empty subset $K \subseteq X$. The following holds:
(1) If X is compact and K is closed, then K is compact (i.e. closed subsets of compact sets are compact).
(2) If (X, \mathcal{T}) is Hausdorff, then K being compact implies that K is closed.

Proof.
(1) If X is compact and $K \subseteq X$ is closed, then K is compact

Proof.
(2) If (X, \mathcal{T}) is Hausdorff, then $K \subseteq X$ compact $\Leftrightarrow K$ is closed.

Proof continued

Compactness on \mathbb{R}^{n}

Theorem (Heine-Borel Theorem)
Let $K \subseteq \mathbb{R}^{n}$. Then K is compact with respect to the topology induced by the Euclidean distance if and only if it is closed and bounded.

Just as we had a sequential characterization of the closure of a set in metric spaces, we similarly have a sequential characterization of compactness.

Theorem

Let (X, d) be a metric space. Then $K \subset X$ is compact with respect to the metric induced by d if and only if every sequence in K admits a subsequence converging to some point in K.

A corollary of this statement together with Heine-Borel is the Bolzano-Weierstrass theorem.

Corollary (Bolzano-Weierstrass)

Any bounded sequence in \mathbb{R}^{n} has a convergent subsequence.

Continuity on a topological space

Definition

Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces. A map $f: X \rightarrow Y$ is called continuous if for all $U \in \mathcal{T}_{Y}, f^{-1}(U) \in \mathcal{T}_{X}$, i.e. the pre-image of open sets is open.

We can also specify continuity at a point $x_{0} \in X$.

Definition

Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces. A map $f: X \rightarrow Y$ is called continuous at $x_{0} \in X$ if for all $U \in \mathcal{T}_{Y}$ with $f\left(x_{0}\right) \in U, f^{-1}(U) \in \mathcal{T}_{X}$, i.e. the preimage of open sets containing $f\left(x_{0}\right)$ is open (and contains x_{0}).

Proposition

Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces. Suppose $K \subset X$ is compact and let $f: K \rightarrow Y$ be continuous. Then $f(K)$ is compact.

Recall from the set theory section:
If $f: X \rightarrow Y$:
(1) $A \subseteq B \subseteq Y \Rightarrow f^{-1}(A) \subseteq f^{-1}(B)$ and $A \subseteq B \subseteq X \Rightarrow f(A) \subseteq f(B)$
(2) $f^{-1}\left(\cup_{i \in I} A_{i}\right)=\cup_{i \in I} f^{-1}\left(A_{i}\right)$, where $A_{i} \subseteq Y \forall i \in I$
(3) $f\left(\cup_{i \in I} A_{i}\right)=\cup_{i \in I} f\left(A_{i}\right)$, where $A_{i} \subseteq X \forall i \in I$
(4) $A \subseteq X \Rightarrow A \subseteq f^{-1}(f(A))$
(5) $B \subseteq Y \Rightarrow f\left(f^{-1}(B)\right) \subseteq B$

Proof.

Proof continued

Linear Algebra

Definition

We call V a vector space if the following hold:
(A) Commutativity in addition: $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in V$
(B) Associativity in addition: $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$
(C) Existence of a neutral element, addition: There exists a vector $\mathbf{0}$ such that for any $\mathbf{v} \in V, \mathbf{0}+\mathbf{v}=\mathbf{v}$
(D) Additive inverse: For every $\mathbf{v} \in V$, there exists another vector, which we denote $-\mathbf{v}$, such that $\mathbf{v}+(-\mathbf{v})=\mathbf{0}$.
(E) Existence of a neutral element, multiplication: For any $\mathbf{v} \in V, 1 \times \mathbf{v}=\mathbf{v}$
(F) Associativity in multiplication: Let $\alpha, \beta \in \mathbb{F}$. For any $\mathbf{v} \in V,(\alpha \beta) \mathbf{v}=\alpha(\beta \mathbf{v})$
(G) Let $\alpha \in \mathbb{F}, \mathbf{u}, \mathbf{v} \in V . \alpha(\mathbf{u}+\mathbf{v})=\alpha \mathbf{u}+\alpha \mathbf{v}$.
(H) Let $\alpha, \beta \in \mathbb{F}, \mathbf{v} \in V .(\alpha+\beta) \mathbf{v}=\alpha \mathbf{v}+\beta \mathbf{v}$.

Elements of the vector space are called vectors.
Most often we will assume $\mathbb{F}=\mathbb{C}$ or \mathbb{R}.

Example

The following are vector spaces:

- \mathbb{R}^{n}
- \mathbb{C}^{n}
- $C(\mathbb{R} ; \mathbb{R})$, continuous functions from \mathbb{R} to \mathbb{R}
- $M_{n \times m}$, matrices of size $n \times m$
- \mathbb{P}_{n} (polynomials of degree $n, p(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$).

Lemma
For every $\mathbf{v} \in V, 0 \mathbf{v}=\mathbf{0}$.

Lemma

For every $\mathbf{v} \in V$, we have $-\mathbf{v}=(-1) \times \mathbf{v}$.

Proof.

Definition

A subset U of V is called a subspace of of V if U is also a vector space (using the same addition and scalar multiplication as on V).

Proposition

A subset U of V is a subspace of V if and only if U satisfies the following three conditions:
(1) $\mathbf{0} \in U$
(2) Closed under addition: $\mathbf{u}, \mathbf{v} \in U$ implies $\mathbf{u}+\mathbf{v} \in U$
(3) Closed under scalar multiplication: $\alpha \in \mathbb{F}$ and $\mathbf{u} \in U$ implies $\alpha \mathbf{u} \in U$

Proof.

(\Rightarrow)
(\Leftarrow)

References

Axler S. Linear Algebra Done Right. 3rd ed. Undergraduate Texts in Mathematics. Springer, 2015. Available from:
https://link.springer.com/book/10.1007/978-3-319-11080-6
Runde, Volker (2005). A Taste of Topology. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Treil S. Linear Algebra Done Wrong. 2017. Available from: https://www.math.brown.edu/streil/papers/LADW/LADW.html

