Module 6: End of Topology, Start of Linear Algebra Operational math bootcamp

Emma Kroell

University of Toronto

July 20, 2022

Outline

- Finish topology
 - Dense subsets
 - Compactness
 - Continuity
- Start linear algebra
 - Vector spaces and subspaces

Last time

Definition (Topology)

Let $\mathcal{T} \subseteq \mathcal{P}(X)$. We call \mathcal{T} a topology on X if the following holds:

- (i) $\emptyset, X \in \mathcal{T}$
- (ii) Let A be an arbitrary index set. If $U_{\alpha} \in \mathcal{T}$ for $\alpha \in A$, then $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}$ (\mathcal{T} is closed under taking arbitrary unions)
- (iii) Let $n \in \mathbb{N}$. If $U_1, \ldots, U_n \in \mathcal{T}$, then $\bigcap_{i=1}^n U_i \in \mathcal{T}$ (\mathcal{T} is closed under taking finite intersections)

If $U \in \mathcal{T}$, we call U open. We call $U \subseteq X$ closed, if $U^c \in \mathcal{T}$. We call (X, \mathcal{T}) a topological space.

Definition

Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$ be any subset.

- The *interior* of A is $\mathring{A} := \{ a \in A : \exists U \in \mathcal{T} \text{ s.t. } U \subseteq A \text{ and } a \in U \}.$
- The *closure* of A is $\overline{A} := \{x \in X : \forall U \in \mathcal{T} \text{ with } x \in U, U \cap A \neq \emptyset\}.$
- The boundary of A is $\partial A := \{x \in X : \forall U \in \mathcal{T} \text{ with } x \in U, \ U \cap A \neq \emptyset \text{ and } U \cap A^c \neq \emptyset \}.$

Density

Definition

Let (X, \mathcal{T}) be a topological space. A subset $A \subseteq X$ is called *dense* if $\overline{A} = X$.

Using the definition of closure, we see that $A \subseteq X$ is dense if and only if for all non-empty $U \in \mathcal{T}$, $U \cap A \neq \emptyset$.

- The rationals \mathbb{Q} are dense in the reals \mathbb{R} .
- The only dense subset in $(X, \mathcal{P}(X))$ is X itself.
- Any non-empty subset is dense in $(X, \{\emptyset, X\})$.

Separability

Definition

A topological space (X, \mathcal{T}) is *separable* if it contains a countable dense subset.

Example

Ris separable Ris dense in IR, Q are countable

Hausdorff space

Definition

A topological space (X, \mathcal{T}) is called *Hausdorff* if for all $x \neq y \in X$ there exist open sets U_x, U_y with $x \in U_x$ and $y \in U_y$ such that $U_x \cap U_y = \emptyset$.

So in a Hausdorff space, we can separate any two elements using open sets.

Example

Let (X, d) be a metric space. Then (X, \mathcal{T}_d) is Hausdorff, where \mathcal{T}_d is the topology induced by the metric d.

why? Choose
$$x,y \in X$$
 s.t. $x \neq y$.
Let $\xi = d(x,y) > 0$.
Take $U_X = B_{\xi/2}(x) \notin U_y = B_{\xi/2}(y)$.
 $B_{\xi/2}(x) \cap B_{\xi/2}(y) = \emptyset$

Let X be an infinite set and $\mathcal{T} = \{ U \subseteq X : U^c \text{ is finite} \} \cup \emptyset$. Then (X, \mathcal{T}) is not Hausdorff.

Proof that (X, T) is not Hausdorff.

Suppose in order to derive a contradiction that it is Hausdorff. Take $x \neq y$, $x,y \in X$. Then $\exists U_x, U_y$ S.t. $x \neq U_x$, $y \in U_y$, $U_x \cap U_y = \emptyset$.

Then $(U_x \cap U_y)^c = \emptyset^c = X$. By de Morgan,

Since Ux, Uy are non-empty open sets, their complements inversity of toronto are fixite, and therefore so is their union.

Compactness

Therefore X is finite. Contradiction

Definition

Let (X, \mathcal{T}) be a topological space and $K \subseteq X$.

A collection $\{U_i\}_{i\in I}$ of open sets is called *open cover* of K if $K \subset \bigcup_{i\in I} U_i$.

The set K is called *compact* if for all open covers $\{U_i\}_{i\in I}$ there exists a finite subcover, meaning there exists an $n \in \mathbb{N}$ and $\{U_1, \ldots, U_n\} \subseteq \{U_i\}_{i \in I}$ such that $K \subseteq \bigcup_{i=1}^n U_i$.

Example

Let $S \subseteq X$ where (X, \mathcal{T}) is a topological space. If S is finite, then it is compact.

Then S= Uuj, :: S is compact

Example

(0,1) is not compact.

The set EUnznew where Un=(+,1).

(0,1) C (2,1).
Suppose that there exists a finite subcover, i.e. NEIN s.t. (0,1) C (1,11)

If n=m, (t,1) < (tm,1) (nested sets)

$$\Im(O_{1}) \subseteq (\frac{1}{n_{N}})$$

TY OF TORONTO SINCE $\exists x \in (O_{1}) \text{ s.t. } O \in X \vdash n_{N}$

this is a contradiction.

: Eunzhem has no finite subcover

Proposition

Let (X, \mathcal{T}) be a topological space and take a non-empty subset $K \subseteq X$. The following holds:

- lacksquare If X is compact and K is closed, then K is compact (i.e. closed subsets of compact sets are compact).
- 2 If (X, \mathcal{T}) is Hausdorff, then K being compact implies that K is closed.

Proof.

(1) If X is compact and $K \subseteq X$ is closed, then K is compact

Let Elligitz be an open cover for K.

Since Kis closed, Kc is open.

=> Elligiez UKC is an open cover for X

Since X is compact, there exists a finite subcover of this open cover.

The finite subcover is of the form Eu,..., un?

05 EU,,..., Ungo Kc.

Either way, EU,,..., Unz is a finite subcover for K. (since K=X): K is compact.

Proof.

(2) If (X, \mathcal{T}) is Hausdorff, then $K \subseteq X$ compact $\overrightarrow{a} K$ is closed.

We will show that K' is open. We will show that there exists open sets Eliczicz s.t.

KC= ULL.

For each xGKC, we construct an open set in KC that contains x.

Let $x \in K^c$. Since X is Hausdorff, tyek, $\exists U_{x,y}, U_y$ disjoint, $x \in U_{x,y}$ & $y \in U_y$.

Proof continued

Since K is compact and Elyzyek is an open cover for K, Iy, ..., yn s.t. K & D Uyi. Let $U_{x} := \int_{i=1}^{\infty} U_{x}, y_{i}$. ax is open, reax, axek

; for any xtkc, I Cix s.t. Xthy

Compactness on \mathbb{R}^n

Theorem (Heine-Borel Theorem)

Let $K \subseteq \mathbb{R}^n$. Then K is compact with respect to the topology induced by the Euclidean distance if and only if it is closed and bounded.

Just as we had a sequential characterization of the closure of a set in metric spaces, we similarly have a sequential characterization of compactness.

Theorem

Let (X, d) be a metric space. Then $K \subset X$ is compact with respect to the metric induced by d if and only if every sequence in K admits a subsequence converging to some point in K.

A corollary of this statement together with Heine-Borel is the Bolzano-Weierstrass theorem.

Corollary (Bolzano-Weierstrass)

Any bounded sequence in \mathbb{R}^n has a convergent subsequence.

Continuity on a topological space

Definition

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A map $f: X \to Y$ is called *continuous* if for all $U \in \mathcal{T}_Y$, $f^{-1}(U) \in \mathcal{T}_X$, i.e. the pre-image of open sets is open.

We can also specify continuity at a point $x_0 \in X$.

Definition

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. A map $f: X \to Y$ is called *continuous* at $x_0 \in X$ if for all $U \in \mathcal{T}_Y$ with $f(x_0) \in U$, $f^{-1}(U) \in \mathcal{T}_X$, i.e. the preimage of open sets containing $f(x_0)$ is open (and contains x_0).

Proposition

Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. Suppose $K \subset X$ is compact and let $f : K \to Y$ be continuous. Then f(K) is compact.

Recall from the set theory section:

If $f: X \to Y$:

2
$$f^{-1}(\bigcup_{i\in I}A_i)=\bigcup_{i\in I}f^{-1}(A_i)$$
, where $A_i\subseteq Y\ \forall i\in I$

$$f(\cup_{i\in I}A_i)=\cup_{i\in I}f(A_i), \text{ where } A_i\subseteq X\,\forall i\in I$$

$$A \subseteq X \Rightarrow A \subseteq f^{-1}(f(A))$$

6
$$B \subseteq Y \Rightarrow f(f^{-1}(B)) \subseteq B$$

Proof.

Proof continued

Since f is continuous, f-1 (Ui) are open.

:. Et-1(Ui) Sitt is an open cover for k

Since K is compact, there exist f-1(U,),..., f-1(Un) such that K = Of-1(Ui).

=> f(K) = f(1), 1-1(u2))

$$= \bigcirc_{i=1}^{n} f(\xi^{-1}(u; j))$$

Statistical Sciences UNIVERSITY OF TORONTO

July 20, 2022

in Eur, ..., unz is a hunte subcover too ECK) is compact

Linear Algebra

Viset, tF: field (think TR or a)

Definition

We call V a **vector space** if the following hold:

- (A) Commutativity in addition: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in V$
- (B) Associativity in addition: $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$
- (C) Existence of a neutral element, addition: There exists a vector ${\bf 0}$ such that for any ${\bf v} \in V$, ${\bf 0} + {\bf v} = {\bf v}$
- (D) Additive inverse: For every $\mathbf{v} \in V$, there exists another vector, which we denote $-\mathbf{v}$, such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$.
- (E) Existence of a neutral element, multiplication: For any $\mathbf{v} \in V$, $1 \times \mathbf{v} = \mathbf{v}$
- (F) Associativity in multiplication: Let $\alpha, \beta \in \mathbb{F}$. For any $\mathbf{v} \in V$, $(\alpha\beta)\mathbf{v} = \alpha(\beta\mathbf{v})$
- (G) Let $\alpha \in \mathbb{F}$, $\mathbf{u}, \mathbf{v} \in V$. $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + 2 \mathbf{v}$.
- (H) Let $\alpha, \beta \in \mathbb{F}, \mathbf{v} \in V$. $(\alpha + \beta)\mathbf{v} = \alpha\mathbf{v} + \beta\mathbf{v}$.

Elements of the vector space are called vectors. Most often we will assume $\mathbb{F} = \mathbb{C}$ or \mathbb{R} .

Example

The following are vector spaces:

- \mathbb{R}^n
- ℂⁿ
- $C(\mathbb{R}; \mathbb{R})$, continuous functions from \mathbb{R} to \mathbb{R}
- $M_{n \times m}$, matrices of size $n \times m$
- \mathbb{P}_n (polynomials of degree n, $p(x) = a_0 + a_1x + \ldots + a_nx^n$).

Lemma

For every $\mathbf{v} \in V$, $0\mathbf{v} = \mathbf{0}$.

Proof.

$$O\vec{v} = (O + O)\vec{v} = O\vec{v} + O\vec{v}$$

Add the additive inverse of $O\vec{v}$ to both sides:
 $\vec{O} = O\vec{v}$.

Lemma

For every $\mathbf{v} \in V$, we have $-\mathbf{v} = (-1) \times \mathbf{v}$.

Proof.

We want to show that $\vec{v} + (-1)\vec{v} = 0$.

From this is addithe inverse $\vec{v} + (-1)\vec{v} = \vec{v}$ $(1 + (-1)) = \vec{v} = 0$

Definition

A subset U of V is called a **subspace** of of V if U is also a vector space (using the same addition and scalar multiplication as on V).

A subset U of V is a subspace of V if and only if U satisfies the following three conditions:

- $\mathbf{0} \in U$
- 2 Closed under addition: $\vec{k} \cdot \vec{w} \in U$ implies $\mathbf{u} + \mathbf{v} \in U$
- **3** Closed under scalar multiplication: $\alpha \in \mathbb{F}$ and $\mathbf{u} \in U$ implies $\alpha \mathbf{u} \in U$

Proof.

(=) If U is a subspace of U, then it satisfies these properties while it is a vector space.

Suppose (1), (2), & (3) hold for U.

Take JEU. Then (-1) JEU, and we already provid that (-1) J=-J.

Statistical Sciences UNIVERSITY OF TORONTO

References

Axler S. Linear Algebra Done Right. 3rd ed. Undergraduate Texts in Mathematics.

Springer, 2015. Available from:

https://link.springer.com/book/10.1007/978-3-319-11080-6

Runde, Volker (2005). A Taste of Topology. Universitext. url:

https://link.springer.com/book/10.1007/0-387-28387-0

Treil S. Linear Algebra Done Wrong. 2017. Available from:

https://www.math.brown.edu/streil/papers/LADW/LADW.html

