Exercises for Module 7: Linear Algebra I

1. Suppose $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is linearly independent in V and $\mathbf{w} \in V$. Prove that if $\mathbf{v}_{1}+\mathbf{w}, \ldots, \mathbf{v}_{m}+\mathbf{w}$ is linearly dependent, then $\mathbf{w} \in \operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)$.
2. Suppose that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is linearly independent in V and $\mathbf{w} \in V$. Show that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$, \mathbf{w} is linearly independent if and only if

$$
\mathbf{w} \notin \operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}
$$

3. Let $T \in \mathcal{L}(\mathbb{P}(\mathbb{R}), \mathbb{P}(\mathbb{R}))$ be the map $T(p(x))=x^{2} p(x)$ (multiplication by x^{2}).
(i) Show that T is linear.
(ii) Find the null space and range of T.
4. Let U and V be finite-dimensional vector spaces and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. Show that dim null $S T \leq \operatorname{dim} \operatorname{null} S+\operatorname{dim} \operatorname{null} T$
5. Let $D \in \mathcal{L}\left(\mathbb{P}_{4}(\mathbb{R}), \mathbb{P}_{3}(\mathbb{R})\right)$ be the differentiation map, $D p=p^{\prime}$. Find bases of $\mathbb{P}_{4}(\mathbb{R})$ and $\mathbb{P}_{3}(\mathbb{R})$ such that the matrix representation of $\mathcal{M}(D)$ with respect to these basis is given by

$$
\mathcal{M}(D)=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

6. Show that matrix multiplication of square matrices is not commutative, i.e find matrices $A, B \in M_{2}$ such that $A B \neq B A$.
