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Outline

Last time:

• Vector space

• Subspace

Today:

• Linear independence and bases

• Linear maps, null space, range, inverses

• Matrices as linear maps
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Linear combinations

Definition
A linear combination of vectors v1, ..., vn of vectors in V is a vector of the form

↵1v1 + ...+ ↵nvn =
nX

k=1

↵kvk

where ↵1, ...,↵m 2 F.
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Span

Definition
The set of all linear combinations of a list of vectors v1, ..., vm in V is called the span

of v1, ..., vm, denoted span{v1, ..., vn}. In other words,

span{v1, ..., vn} = {↵1v1 + ...+ ↵mvn : ↵1, ...,↵n 2 F}

The span of the empty list is defined to be {0}.
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Basis

Definition

A system of vectors v1, . . . , vn is called a basis (for the vector space V ) if any vector
v 2 V admits a unique representation as a linear combination

v = ↵1v1 + . . .+ ↵nvn =
nX

k=1

↵kvk .

Example
• For Fn, e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) is a basis

• The monomials 1, x , x2, . . . , xn form a basis for Pn.
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Linear independence

Definition
A system of vectors v1, . . . , vn in V is called linearly independent if

nX

i=1

↵ivi = 0

implies ↵i = 0 for all i = 1, . . . , n.

Otherwise, we call the system linearly dependent.

Linear combinations ↵1v1 + ...+ ↵nvn such that ↵k = 0 for every k are called trivial.
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Spanning set

Definition
A system of vectors v1, . . . , vn in V is called spanning if any vector in V can be
written as a linear combination of v1, . . . , vn. In other words,

V = span{v1, . . . , vn}.

Such a system is also often called generating or complete. The next proposition relates
spanning and linearly independent to a basis.

July 21, 2022 7 / 39



Proposition

A system of vectors v1, . . . vn 2 V is a basis if and only if it is linearly independent and
spanning.

Proof.

())
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Proof continued

(()
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Proposition

Let v1, . . . , vn 2 V be spanning. Then v1, . . . , vn contains a basis.

Sketch of proof.
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Definition
An F-vector space V is called finite dimensional if there exists a finite list of vectors
that span it, i.e. there exist n 2 N and v1, . . . , vn 2 V such that
V = span{v1, . . . , vn}. Otherwise, we call V infinite dimensional.

Example
• Fn, Mm⇥n, Pn are examples of finite dimensional vector spaces

• The F-vector space P = {
Pn

i=1 ↵ix i : n 2 N,↵i 2 F, i = 1, . . . , n} is infinite
dimensional.
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Corollary

Every finite dimensional vector space has a basis.

This follows from the fact that every spanning set for a vector space contains a basis.

This can also be extended to infinite dimensional vector spaces, i.e. when we do not
assume that there exists a finite spanning set. However, this relies on the Axiom of
Choice and is beyond the scope of this course.
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Proposition

Every linearly independent list of vectors in a finite-dimensional vector space can be
extended to a basis of the vector space.

Proof.

July 21, 2022 13 / 39

Let u
, ,

.
-

.

,
un be linearly independent vectors

in U . Add the basis of U
, Vi ,

.
- -

.
Un

.

Then U ,
,
.
- -

,
Un

,

Vi
,
- - -

,
Un spans V .

We can reduce it by Prop .

2.31 in book
,

to a basis that contains the u's
.



Dimension

Proposition

Let v1, . . . , vn and u1, . . . ,um be a basis for V . Then m = n.

The proof is omitted,. It relies on the fact that the number of elements in linearly
independent systems are always less than or equal to the number of elements in
spanning systems.

Definition
Let V be a finite dimensional F-vector space. The number of elements in a basis of V
is called the dimension of V and is denoted dim(V ).

By the previous definition, the notion of dimension is well-defined.
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Dimension

Example
• dim(Fn) =

• dim(Pn) =

• dim{0} =
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Linear Maps

Definition
A map from a vector space U to a vector space V is linear if

T (↵u+ �v) = ↵T (u) + �T (v) for any u, v 2 V , ↵,� 2 F

Notation: L(U,V ) is the set of all linear maps from F-vector space U to F-vector
space V
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Example
• Zero map

• Identity map

• Di↵erentiation
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Theorem
Suppose u1, . . . ,un is a basis for U and v1, . . . , vn is a basis for V . Then there exists a
unique linear map T : U ! V such that Tuj = vj for j = 1, . . . , n.

Proof in book

Theorem

Let S ,T 2 L(U,V ) and ↵ 2 F. L(U,V ) is a vector space with addition defined as the
sum S + T and multiplication as the product ↵T .

The proof follows from properties of linear maps and vector spaces. Note that the
additive identity is the zero map.
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Lemma

Let T 2 L(U,V ). Then T (0) = 0.

Proof.
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Null space and range

Definition
Let T : U ! V be a linear transformation. We define the following important
subspaces:

• Kernel or null space: nullT = {u 2 U : Tu = 0}
• Range: range T = {v 2 V : 9u 2 U such that v = Tu}

The dimensions of these spaces are often called the following:

• Nullity: nullity(T ) = dim(null(T ))

• Rank: rank(T ) = dim(range(T ))
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Proposition

Let T : U ! V . The null space of T is a subspace of U and the range of T is a
subspace of V .

Proof.

July 21, 2022 21 / 39

Since T(01=0
,
0 is in null-1 .

UN-cnul.IT then Tlutv) =Tcu ) +TCU) =0+0=0
a c-F

,
VE null-1 ,

then Tau 1--21-0--20
= 0

Tange : T(E) =
,
8€ range-1

suppose v.
,
V2 C- range-1 : Then 241,42C-U

sit Tcu
,
) = ✓ , & TCU2) = V2 .

So TCU , + U2) = Tlui) + TCU2) = Vi -1V2



Example

Zero map from a vector space U to a vector space V :

• The null space is

• The range is

Di↵erentiation map from P(R) to P(R):
• The null space is

• The range is
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Definition (Injective and surjective)

Let T : U ! V . T is injective if Tu = Tv implies u = v and T is surjective if
8u 2 U, 9v 2 V such that v = Tu, i.e. if rangeT = V .

Theorem

T 2 L(U, v) is injective if and only if nullT = {0}.

July 21, 2022 23 / 39

-



Proof.

())

(()
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Theorem (Rank Nullity Theorem)

Let T : U ! V be a linear transformation, where U and V are finite-dimensional
vector spaces. Then

rankT + nullityT = dimU.

Proof.
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Proof continued
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Proof continued

July 21, 2022 26 / 39

since Ui
,
-
-

-

,
Um is a basis for null -1

⇒ Idi
,

.
. .

,

dm C- IF s .

t.ci
Wit _ . . + Cnwn = dilli -1 - ^ - tdmllm

Since Ui
,

- - -

,
Um

,
W
, ,

. .

,
Wn is a

basis for U.

-

'

.

C
,
= -

- - = Cn =D ,
= - - - =dm= 0

Since Ci's = 0 , then Tw , ,
. - -

,
-1Wh

are 1in . ind.

-

'

.
Twi

,
^ ^^

,

Twn is a basis
for

range -1 .

.

.
dim range-1

= Mr



Definition (Product of linear maps)

Let S 2 L(U,V ) and T 2 L(V ,W ). We define the product ST 2 L(U,W ) for u 2 U
as ST (u) = S(T (u)).

Definition
A linear map T : U ! V is invertible if there exists a linear map S : V ! U such that
ST is the identity map on U and TS is the identity map on V . Such a map S is called
the inverse of T .

If T is invertible, we denote the inverse by T�1. This is justified by the fact that the
inverse is unique:
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Proposition

Any invertible linear map has a unique inverse.

Proof.
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Theorem
A linear map is invertible if and only if it is injective and surjective.

See proof in the book.

Definition
An invertible linear map is called an isomorphism. If there exists an isomorphism from
one vector space to another, we say that the vector spaces are isomorphic.
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Theorem
Two finite-dimensional vector spaces over F are isomorphic if and only if they have the
same dimension.

Proof.

())
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Proof continued
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Linear maps and matrices

Example

Let A 2 Mm⇥n be a fixed matrix. Then, we can define a linear map TA : Fn ! Fm via
TA(v) = Av, where we recall matrix vector multiplication (Av)i =

Pn
k=1 Aikvk for

i = 1, . . . ,m.

Next we will see that we can use matrices to represent linear maps between finite
dimensional vector spaces.
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Definition

Let T 2 L(U,V ) where U and V are vector spaces. Let u1, . . . ,un and v1, . . . , vm be
bases for U and V respectively. The matrix of T with respect to these bases is the
m ⇥ n matrix M(T ) with entries Aij , i = 1, . . . ,m, j = 1, . . . , n defined by

Tuk = A1kv1 + · · ·+ Amkvm

i.e. the kth column of A is the scalars needed to write Tuk as a linear combination of
the basis of V :

Tuk =
mX

i=1

Aikvi

Note that since a linear map T 2 L(U,V ) is uniquely determined by its image on a
basis of U, we see that once we pick basis of U and V its matrix representation is
uniquely determined.
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Example

Let D 2 L(P4(R),P3(R)) be the di↵erentiation map, Dp = p0. Find the matrix of D
with respect to the standard bases of P3(R) and P4(R).
Standard basis: 1, x , x2, x3, (x4)
T (u1)
T (u2)
T (u3)
T (u4)
T (u5)

The matrix is:
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• Observe that if we choose bases u1, . . . ,un and v1, . . . , vm for U,V and represent
T 2 L(U,V ) as a matrix M(T ), then the corresponding map can be obtained by
just working with the coordinates of vectors in U,V with respect to the chosen
basis

• If u =
Pn

i=1 ↵iui , then the coordinates of T (u) with respect to v1, . . . , vm can be
obtained by the matrix vector multiplication M(T )↵, where ↵ is the n⇥ 1 matrix
with entries ↵i
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Example

If we want to find the derivative of p = x4 + 12x3 � 5x2 + 7 with respect to the
standard monomial basis of P4(R), we use M(D) from the previous example to obtain

M(D)↵ =

0

BB@

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

1

CCA

0

BBBB@

7
0
�5
12
1

1

CCCCA
=

0

BB@

0
�10
36
4

1

CCA .

Thus, translating back into the monomial basis of P3(R) gives
D(p) = �10x + 36x2 + 4x3.
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Other points

• Looking at matrices as representations of linear maps gives us an intuitive
explanation for why we do matrix multiplication the way we do! In fact, we want
matrix multiplication to represent composition of linear maps

• We can use matrices to solve linear systems.
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Next time

• Determinants

• Eigenvalues and eigenvectors

• Inner product spaces
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