Module 7: Linear Algebra I
 Operational math bootcamp

Statistical Sciences
UNIVERSITY OF TORONTO

Emma Kroell
University of Toronto
July 21, 2022

Outline

Last time:

- Vector space
- Subspace

Today:

- Linear independence and bases
- Linear maps, null space, range, inverses
- Matrices as linear maps

Linear combinations

F-vector space \urcorner

Definition

A linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of vectors in V is a vector of the form

$$
\alpha_{1} \mathbf{v}_{1}+\ldots+\alpha_{n} \mathbf{v}_{n}=\sum_{k=1}^{n} \alpha_{k} \mathbf{v}_{k}
$$

where $\alpha_{1}, \ldots, \alpha_{\mathbb{q}} \in \mathbb{F}$.

Span

Definition

The set of all linear combinations of a list of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{m}_{n}}$ in V is called the span of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ denoted $\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$. In other words,

$$
\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}=\left\{\alpha_{1} \mathbf{v}_{1}+\ldots+\alpha_{m} \mathbf{v}_{n}: \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}\right\}
$$

The span of the empty list is defined to be $\{\mathbf{0}\}$.

Basis

Definition

A system of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is called a basis (for the vector space V) if any vector $\mathbf{v} \in V$ admits a unique representation as a linear combination

$$
\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\ldots+\alpha_{n} \mathbf{v}_{n}=\sum_{k=1}^{n} \alpha_{k} \mathbf{v}_{k}
$$

Example $=\mathbb{R}^{n}$

- For $\mathbb{F}^{n}, e_{1}=(1,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0), \ldots, e_{n}=(0, \ldots, 0,1)$ is a basis
- The monomials $1, x, x^{2}, \ldots, x^{n}$ form a basis for \mathbb{P}_{n}.

$$
\mathbb{R}^{2}:(0,1),(1,0)
$$

Linear independence

Definition

A system of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ in V is called linearly independent if

$$
\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}=\mathbf{0}
$$

implies $\alpha_{i}=0$ for all $i=1, \ldots, n$.
Otherwise, we call the system linearly dependent.

Linear combinations $\alpha_{1} \mathbf{v}_{1}+\ldots+\alpha_{n} \mathbf{v}_{n}$ such that $\alpha_{k}=0$ for every k are called trivial.

Spanning set

Definition

A system of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ in V is called spanning if any vector in V can be written as a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. In other words,

$$
V=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}
$$

Such a system is also often called generating or complete. The next proposition relates spanning and linearly independent to a basis.

Proposition
A system of vectors $\mathbf{v}_{1}, \ldots \mathbf{v}_{n} \in V$ is a basis if and only if it is linearly independent and spanning.

Proof.
(\Rightarrow) Let v_{1}, \ldots, v_{n} be a basis for V.
By definition, any $v \in V$ has a unique representation as a linear combination of $v_{1}, \ldots, v_{n} \ldots v_{1}, \ldots, v_{n}$ is spanning.
Since, the representation is unique for each $v \in U$, $O=O v_{1}+\cdots+O v_{n}$, this must be the only way to $=\overrightarrow{0}$. Thus v_{1}, \ldots, v_{n} ave lin. ind.

Proof continued
(\Leftarrow) Suppose v_{1}, \ldots, v_{n} is lin. ind $\&$ span V. Let $v \in V$. Since u_{1}, \ldots, v_{n} spanning, $\exists \alpha_{i} \in \mathbb{F}$ st. $v=\sum_{i=1}^{n} \alpha_{i} u_{n}$. To show that this is unique, suppose $\exists \beta_{i} \in \mathbb{N}$ s.t. $\sum_{i=1}^{n} B_{i} v_{i}=v$.

Then $\vec{O}=v-v=\sum_{i=1}^{n}\left(\alpha_{i}-\beta \beta_{i}\right) v_{i}$
By linear ind, $\alpha_{i}=\beta_{i} \forall i=1, \ldots, \infty, \therefore$ it is unige $\therefore v_{1}, \ldots, v_{n}$ is a basis
弯

Proposition
Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in V$ be spanning. Then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ contains a basis.

Sketch of proof.
If v_{1}, \ldots, u_{n} are linearity ind, the were done. otherwise, we find one that can be written as a combination of the others \& remove it. Keep going until we have a basis.

Definition

An \mathbb{F}-vector space V is called finite dimensional if there exists a finite list of vectors that span it, i.e. there exist $n \in \mathbb{N}$ and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in V$ such that
$V=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$. Otherwise, we call V infinite dimensional.

Example

- $\mathbb{F}^{n}, M_{m \times n}, \mathbb{P}_{n}$ are examples of finite dimensional vector spaces
- The \mathbb{F}-vector space $\mathbb{P}=\left\{\sum_{i=1}^{n} \alpha_{i} x^{i}: n \in \mathbb{N}, \alpha_{i} \in \mathbb{F}, i=1, \ldots, n\right\}$ is infinite dimensional. \square
Why? Suppose it is finite. Then $\frac{7}{a} p_{1}, \ldots$ pr polynomials that span $D . B_{1}+P_{1}, \ldots, p_{n}$ must hare a maximum degree, call it N.

Corollary

Every finite dimensional vector space has a basis.
This follows from the fact that every spanning set for a vector space contains a basis.
This can also be extended to infinite dimensional vector spaces, i.e. when we do not assume that there exists a finite spanning set. However, this relies on the Axiom of Choice and is beyond the scope of this course.

Proposition
Every linearly independent list of vectors in a finite-dimensional vector space can be extended to a basis of the vector space.

Proof.
Let $u_{1}, \ldots u_{n}$ be linearly independent vectors in $U^{\prime \prime}$. Add the basis of $U_{1}, v_{1}, \cdots, v_{n}$.
Then $u_{1}, \ldots, u_{n}, v_{1}, \ldots$. u_{n} spans V.
We can reduce it by Prop. 2.31 in book, to a basis that cortteins the u's.

6 \qquad

Dimension

Proposition

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ be a basis for V. Then $m=n$.
The proof is omitted,. It relies on the fact that the number of elements in linearly independent systems are always less than or equal to the number of elements in spanning systems.

Definition

Let V be a finite dimensional \mathbb{F}-vector space. The number of elements in a basis of V is called the dimension of V and is denoted $\operatorname{dim}(V)$.

By the previous definition, the notion of dimension is well-defined.

Dimension

Example

- $\operatorname{dim}\left(\mathbb{F}^{n}\right)=n$
- $\operatorname{dim}\left(\mathbb{P}_{n}\right)=n+1$
- $\operatorname{dim}\{\mathbf{0}\}=0$

Linear Maps

Definition

A map from a vector space U to a vector space V is linear if

$$
T(\alpha \mathbf{u}+\beta \mathbf{v})=\alpha T(\mathbf{u})+\beta T(\mathbf{v}) \quad \text { for any } \mathbf{u}, \mathbf{v} \in V, \alpha, \beta \in \mathbb{F}
$$

Notation: $\mathcal{L}(U, V)$ is the set of all linear maps from \mathbb{F}-vector space U to \mathbb{F}-vector space V

- Zero map $0: U \rightarrow v$, $u \in U$, then $O u=0$
- Identity map $I: V \rightarrow V, \quad I V=U$ for $V \in V$
- Differentiation $D \in L(\mathbb{P}(\mathbb{R}), \mathbb{P}(\mathbb{R}))$

$$
\begin{aligned}
& D p=p^{\prime} \\
& \frac{d}{d x}(\alpha f(x)+\beta g(x))=\alpha f^{\prime}(x) \\
& +\beta g^{\prime}(x)
\end{aligned}
$$

Theorem

Suppose $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ is a basis for U and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a basis for V. Then there exists a unique linear map $T: U \rightarrow V$ such that $T \mathbf{u}_{j}=\mathbf{v}_{j}$ for $j=1, \ldots, n$.

Proof in book

Theorem

Let $S, T \in \mathcal{L}(U, V)$ and $\alpha \in \mathbb{F} . \mathcal{L}(U, V)$ is a vector space with addition defined as the sum $S+T$ and multiplication as the product αT.

The proof follows from properties of linear maps and vector spaces. Note that the additive identity is the zero map.

Proof.

$$
T(\overrightarrow{0})=T(\overrightarrow{0}+\overrightarrow{0})=T(\overrightarrow{0})+T(\overrightarrow{0})
$$

add $-T(\overrightarrow{0})$ to both sides,

$$
\Rightarrow \overrightarrow{0}=T(\overrightarrow{0})
$$

鿷 \qquad

Null space and range

Definition

Let $T: U \rightarrow V$ be a linear transformation. We define the following important subspaces:

- Kernel or null space: null $T=\{\mathbf{u} \in U: T \mathbf{u}=0\}$
- Range: range $T=\{\mathbf{v} \in V: \exists \mathbf{u} \in U$ such that $\mathbf{v}=T \mathbf{u}\}$

The dimensions of these spaces are often called the following:

- Nullity: $\operatorname{nullity}(T)=\operatorname{dim}(\operatorname{null}(T))$
- Rank: $\operatorname{rank}(T)=\operatorname{dim}(\operatorname{range}(T))$

Proposition
Let $T: U \rightarrow V$. The null space of T is a subspace of U and the range of T is a subspace of V.

Proof.
Since $\tau(0)=0, O$ is in null T.
u, v null T then $T(u+v)=T(u)+T(v)=0+0=0$ $\alpha \in \mathbb{F}, v \in$ null t, then $T(\alpha v)=\alpha T(v)=\alpha 0$
range: $T(\vec{O})=\overrightarrow{0}, \vec{O} \in$ range T
suppose $v_{1}, v_{2} \in$ range T : Then $\lambda u_{1}, u_{2} \in U$
\qquad

$$
\text { s.t } T\left(u_{1}\right)=v_{1} \& \quad T\left(u_{2}\right)=v_{2}
$$

So $T\left(u_{1}+u_{2}\right)^{\prime}=T\left(u_{1}\right)+T\left(u_{2}\right)=v_{1} t_{J_{\text {july }} \mathcal{V}_{2}, \partial_{22}}$

Example

Zero map from a vector space U to a vector space V :

- The null space is U
- The range is $\left.\sum_{C} \vec{O}\right\}$

Differentiation map from $\mathbb{P}(\mathbb{R})$ to $\mathbb{P}(\mathbb{R})$:

- The null space is constants
- The range is $\mathbb{P}(\mathbb{R})$

Definition (Injective and surjective)

Let $T: U \rightarrow V$. T is injective if $T \mathbf{u}=T \mathbf{v}$ implies $\mathbf{u}=\mathbf{v}$ and T is surjective if $\forall \mathbf{u} \in U, \exists \mathbf{v} \in V$ such that $\mathbf{v}=T \mathbf{u}$, i.e. if range $T=V$.

Theorem

$T \in \mathcal{L}(U, v)$ is injective if and only if null $T=\{\mathbf{0}\}$.

Proof.
\Leftrightarrow Suppose T is injective. We know that \vec{O} null T. because $T(0)=0$. Suppose that $\exists v \in$ null T. Then $T(v)=0=T(0)$, since τ is infective, $V=0 . \quad \therefore$ null $\tau=\{\vec{D}\}$
\Leftrightarrow Suppose null $t=\{\overrightarrow{0}\}_{\text {. }}$. Let $T u=T v, u, v \in L$. We want to show $u=v$.

$$
\begin{aligned}
T u= & T v \Rightarrow T(u-v)=0 \Rightarrow u-v \in \operatorname{null} T \\
& \Rightarrow u-v=0 \Rightarrow u=v
\end{aligned}
$$

离

Theorem (Rank Nullity Theorem)
Let $T: U \rightarrow V$ be a linear transformation, where U and V are finite-dimensional vector spaces. Then

$$
\operatorname{rank} T+\text { nullity } T=\operatorname{dim} U .
$$

Proof.
Let $u, .$. . $u m$ be a basis for null T. We can extend it to a basis for u. Suppose w_{1}, \ldots, w_{n} is added to u, \ldots, um to have a basis for ' u '.
Then $\operatorname{dim} u=m+n$, $\operatorname{dim} n u l l=m$.
We show that $T \omega, \ldots$ Tun is a basis for range T.

Proof continued
Let $u \in U$. Then $\exists \alpha_{i}, \beta_{j} i=1, \cdots, m, j=1, \cdots, n$, such that $u=\alpha_{1} u_{1}+\cdots+\alpha_{m} u_{m}+\beta_{1} w_{1}+\cdots+\beta_{n} w_{n}$
Apply $T_{:} T_{u}=\alpha_{1} T u_{1}+\cdots+\alpha_{m} T u_{m}+\beta_{1} T_{\omega_{1}}+\cdots$

$$
\begin{aligned}
& +\beta_{n} \tau w_{n} \\
= & \beta_{1} \tau \omega_{1}+\cdots+\beta_{n} \tau \omega_{n}
\end{aligned}
$$

$\therefore T_{w}, \ldots, T_{w_{n}}$ span range T
Let $c_{1}, \ldots, c_{n} \in \mathbb{F}$. Let $O=c_{1} \tau_{w_{1}}+\ldots .+c_{n} T u s$

$$
=T\left(c_{1} w_{1}+\cdots+c_{n} \omega_{n}\right)
$$

$$
c_{1} w_{1}+\ldots+c_{n} w_{n} \in \text { null T }
$$

Proof continued
since u_{1}, \ldots, u_{m} is a basis for null t $\Rightarrow \exists d_{1}, \ldots, d_{m} \in \mathbb{F}$ s.t.
$c_{1} w_{1}+\ldots+c_{n} w_{n}=d_{1} u_{1}+\ldots+d_{m} u_{m}$
Since $u_{1}, \ldots, u_{m}, w_{1}, \ldots, w_{n}$ is a basis for u.

$$
\therefore c_{1}=\cdots=c_{n}=d_{1}=\cdots=d_{m}=0
$$

Since $c_{i}^{\prime} s=0$, then T_{w}, \ldots, Tun are lin. ind.
\therefore Tw,...T Tun is a basis for
需 range $t \cdots \because$ dimvange $T=n_{1}=$

Definition (Product of linear maps)

Let $S \in \mathcal{L}(U, V)$ and $T \in \mathcal{L}(V, W)$. We define the product $S T \in \mathcal{L}(U, W)$ for $\mathbf{u} \in U$ as $S T(\mathbf{u})=S(T(\mathbf{u}))$.

Definition

A linear map $T: U \rightarrow V$ is invertible if there exists a linear map $S: V \rightarrow U$ such that $S T$ is the identity map on U and $T S$ is the identity map on V. Such a map S is called the inverse of T.

If T is invertible, we denote the inverse by T^{-1}. This is justified by the fact that the inverse is unique:

$$
T T^{-1}=I, T^{-1} T=I
$$

Proof.
Let $T: U \rightarrow V$. Suppose $S_{1} \& S_{2}$ are both inverses for T.
Then $S_{1}=S_{1} I=\underset{\substack{\text { sind } \\ \text { sin }}}{S_{2} T S_{2} \text { isinu }}=I S_{2}=S_{2}$.

象 \qquad

Theorem

A linear map is invertible if and only if it is injective and surjective.
See proof in the book.

Definition

An invertible linear map is called an isomorphism. If there exists an isomorphism from one vector space to another, we say that the vector spaces are isomorphic.

Theorem
Two finite-dimensional vector spaces over \mathbb{F} are isomorphic if and only if they have the same dimension.

Proof.
\Leftrightarrow Suppose $\exists T: U \rightarrow V$ which is invertible.
By Chm, τ is both injective \& surjeetive.
\Rightarrow null $T=\{\overrightarrow{0}\}$, range $\tau=V$
dim range $T+\operatorname{dim}$ null $T=\operatorname{dim} U$ $\operatorname{dim} V+\operatorname{dim}\{\overrightarrow{0}\}_{0}=\operatorname{dim} u$

$$
\Rightarrow \operatorname{dim} \overline{\bar{V}}=\operatorname{dim} U
$$

为
(\Leftrightarrow) Let U, V have the same dimension. Let u_{1}, \ldots, u_{n} be a basis for u and v_{1}, \ldots, v_{n} be a basis for V.
Define the map $T: U \rightarrow V$

$$
T\left(c_{1} u_{1}+\ldots+c_{n} u_{n}\right)=c_{1} v_{1}+\ldots+c_{n} u_{n}
$$

Since v_{1}, \ldots, v_{n} span V, map T is surjectile and since they are linearly ind, null $\tau=\{\overrightarrow{0}\}$. $\therefore T$ is surjective $\&$ injecthe $\Rightarrow T$ is an isomorphism

Linear maps and matrices

Example

Let $A \in M_{m \times n}$ be a fixed matrix. Then, we can define a linear map $T_{A}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ via $T_{A}(\mathbf{v})=A \mathbf{v}$, where we recall matrix vector multiplication $(A \mathbf{v})_{i}=\sum_{k=1}^{n} A_{i k} v_{k}$ for $i=1, \ldots, m$.

Next we will see that we can use matrices to represent linear maps between finite dimensional vector spaces.

Definition

Let $T \in \mathcal{L}(U, V)$ where U and V are vector spaces. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ be bases for U and V respectively. The matrix of T with respect to these bases is the $m \times n$ matrix $\mathcal{M}(T)$ with entries $A_{i j}, i=1, \ldots, m, j=1, \ldots, n$ defined by

$$
T \mathbf{u}_{k}=A_{1 k} \mathbf{v}_{1}+\cdots+A_{m k} \mathbf{v}_{m}
$$

i.e. the k th column of A is the scalars needed to write $T \mathbf{u}_{k}$ as a linear combination of the basis of V :

$$
T \mathbf{u}_{k}=\sum_{i=1}^{m} A_{i k} \mathbf{v}_{i}
$$

Note that since a linear map $T \in \mathcal{L}(U, V)$ is uniquely determined by its image on a basis of U, we see that once we pick basis of U and V its matrix representation is uniquely determined.

Example
Let $D \in \mathcal{L}\left(\mathbb{P}_{4}(\mathbb{R}), \mathbb{P}_{3}(\mathbb{R})\right)$ be the differentiation map, $D p=p^{\prime}$. Find the matrix of D with respect to the standard bases of $\mathbb{P}_{3}(\mathbb{R})$ and $\mathbb{P}_{4}(\mathbb{R})$.
Standard basis: $1, x, x^{2}, x^{3},\left(x^{4}\right)$

$$
\begin{aligned}
& T\left(u_{1}\right)=(1)^{\prime}=0 \\
& T\left(u_{2}\right)=(x)^{\prime}=1 \\
& T\left(u_{3}\right)=\left(x^{2}\right)^{\prime}=2 x \\
& T\left(u_{4}\right)=\left(x^{3}\right)^{\prime}=3 x^{2} \\
& T\left(u_{5}\right)=\left(x^{4}\right)^{\prime}=4 x^{3}
\end{aligned}
$$

The matrix is:

$$
M(D)=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3 & 0
\end{array}\right)
$$

- Observe that if we choose bases $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ for U, V and represent $T \in \mathcal{L}(U, V)$ as a matrix $\mathcal{M}(T)$, then the corresponding map can be obtained by just working with the coordinates of vectors in U, V with respect to the chosen basis
- If $\mathbf{u}=\sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i}$, then the coordinates of $T(\mathbf{u})$ with respect to $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ can be obtained by the matrix vector multiplication $\mathcal{M}(T) \boldsymbol{\alpha}$, where $\boldsymbol{\alpha}$ is the $n \times 1$ matrix with entries α_{i}

Example

If we want to find the derivative of $p=x^{4}+12 x^{3}-5 x^{2}+7$ with respect to the standard monomial basis of $\mathbb{P}_{4}(\mathbb{R})$, we use $\mathcal{M}(D)$ from the previous example to obtain

$$
\mathcal{M}(D) \boldsymbol{\alpha}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right)\left(\begin{array}{c}
7 \\
0 \\
-5 \\
12 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
-10 \\
36 \\
4
\end{array}\right)
$$

Thus, translating back into the monomial basis of $\mathbb{P}_{3}(\mathbb{R})$ gives $D(p)=-10 x+36 x^{2}+4 x^{3}$.

Other points

- Looking at matrices as representations of linear maps gives us an intuitive explanation for why we do matrix multiplication the way we do! In fact, we want matrix multiplication to represent composition of linear maps
- We can use matrices to solve linear systems.

Next time

- Determinants
- Eigenvalues and eigenvectors
- Inner product spaces

References

Axler S. Linear Algebra Done Right. 3rd ed. Undergraduate Texts in Mathematics. Springer, 2015. Available from:
https://link.springer.com/book/10.1007/978-3-319-11080-6
Treil S. Linear Algebra Done Wrong. 2017. Available from:
https://www.math.brown.edu/streil/papers/LADW/LADW.html

