Exercises for Module 8: Linear Algebra II

1. A square matrix is called nilpotent if $\exists k \in \mathbb{N}$ such that $A^{k}=0$. Show that for a nilpotent matrix A, $|A|=0$.
2. A real square matrix Q is called orthogonal if $Q^{T} Q=I$. Prove that if Q is orthogonal, then $|Q|= \pm 1$.
3. An $n \times n$ matrix is called antisymmetric if $A^{T}=-A$. Prove that if A is antisymmetric and n is odd, then $|A|=0$.
4. Let V be an inner product space, U a vector space and $S: U \rightarrow V, T: U \rightarrow V$ be linear maps. Show that $\langle S \mathbf{u}, \mathbf{v}\rangle=\langle T \mathbf{u}, \mathbf{v}\rangle$ for all $\mathbf{u} \in U$ and $\mathbf{v} \in V$ implies $S=T$.
5. Let V be an inner product space and $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ be an orthonormal basis and $\mathbf{y} \in V$. Then, \mathbf{x} has a unique representation $\mathbf{y}=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}$. Show that $\alpha_{i}=\left\langle\mathbf{y}, \mathbf{x}_{i}\right\rangle$ for all $i=1, \ldots, n$.
6. Let V be an inner product space and $U \subseteq V$ a subset. Show that U^{\perp} is a subspace of V.
7. Let U, V, W be inner product spaces and $S, T \in \mathcal{L}(U, V)$ and $R \in \mathcal{L}(V, W)$. Show that the following holds
8. $(S+\alpha T)^{*}=S^{*}+\bar{\alpha} T^{*}$ for all $\alpha \in \mathbb{F}$
9. $\left(S^{*}\right)^{*}=S$
10. $(R S)^{*}=S^{*} R^{*}$
11. $I^{*}=I$, where $I: U \rightarrow U$ is the identity operator on U
