Module 8: Linear Algebra II Operational math bootcamp

Emma Kroell

University of Toronto

July 22, 2022

Outline

Last time:

- Linear independence and bases
- Linear maps, null space, range, inverses
- Matrices as linear maps

Today:

- Determinants
- Inner product spaces

Determinants

Determinant

- The determinant is a function from $M_{n \times n} \to \mathbb{F}$, i.e. it is a function from the entries of a square matrix to a real or complex number.
- The determinant has applications in solving linear systems, computing eigenvalues, etc

Example: 2×2 matrix

The determinant of a 2×2 matrix is

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} =$$

Example: 3×3 matrix

There is a **trick** for finding the determinant of a 3 by 3 matrix:

Cofactor expansion

For other $n \times n$ matrices, one can compute the determinant using cofactor expansion.

Definition (Cofactor expansion)

Let $A = \{a_{j,k}\}_{j,k=1}^n$ be a $n \times n$ matrix. Let $M_{j,k}$ denote the determinant of the $(n-1) \times (n-1)$ matrix obtained by removing the j^{th} row and the k^{th} column of A. For each row j = 1, ..., n

$$|A| = \sum_{k=1}^{n} a_{j,k} (-1)^{j+k} M_{j,k}.$$

Similarly, for each column $k = 1, \ldots, n$

$$|A| = \sum_{j=1}^{n} a_{j,k} (-1)^{j+k} M_{j,k}.$$

The numbers $C_{j,k} = (-1)^{j+k} M_{j,k}$ are called *cofactors*.

Proposition

The determinant of a diagonal matrix or triangular matrix is the product of the entries on the diagonal.

Sketch of proof

Inverse of a matrix

Theorem

Let A be an $n \times n$ invertible matrix and let $C = \{C_{j,k}\}_{j,k=1}^{n}$ be its cofactor matrix. Then 1 = 1

$$A^{-1} = \frac{1}{|A|} C^{\mathsf{T}}$$

Connection to last lecture: The matrix A is invertible if and only if the linear map represented by the matrix is an isomorphism.

Cramer's rule

Corollary

Suppose A is an $n \times n$ invertible matrix. The linear system $A\mathbf{x} = \mathbf{b}$ has a unique solution given by

$$\mathbf{x}_i = \frac{|A_i|}{|A|}, \quad i, \ldots, n,$$

where A_i is the matrix obtained by replacing the *i*th column of A with **b**.

Transpose of a matrix

Definition

The *transpose* of an $m \times n$ matrix A is the $n \times m$ matrix, denoted A^T , defined entry-wise as $\{A_{j,k}^T\} = \{A_{k,j}\}$ for j = 1, ..., m and k = 1, ..., n (i.e. the rows of A are the columns of A^T and the columns of A are the rows of A^T)

Properties of the determinant

Proposition

 $|A| \neq 0$ if and only if A is invertible

Proposition

Let A be an $n \times n$ real matrix.

1 If A has a zero column, then
$$|A| = 0$$
.

2 If A has two equal columns, then
$$|A| = 0$$
.

3 If one column of A is a multiple of another, then |A| = 0.

4
$$|AB| = |A||B|$$

5 $|\alpha A| = \alpha^n |A|$ for $\alpha \in \mathbb{F}$

6
$$|A^T| = |A|$$

Inner product spaces

Complex numbers

Recall that for a complex number z = a + ib, we define the following:

- Real part: Re(z) = a,
- Imaginary part: Im(z) = b,
- Complex conjugate: $\overline{z} = a ib$,
- Modulus: $|z| = \sqrt{Re(z)^2 + Im(z)^2} = \sqrt{a^2 + b^2}$

We have
$$|z|^2=z\overline{z}$$
 and $Re(z)=rac{z+\overline{z}}{2}.$

Definition

Let V be an \mathbb{F} -vector space. A function $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{F}$ is called *inner product* on V if the following holds:

- (Conjugate) symmetry: $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$ for all $\mathbf{x}, \mathbf{y} \in V$, where \overline{a} denotes the complex conjugate for $a \in \mathbb{C}$
- 2 Linearity in the first argument: $\langle \alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ and $\alpha, \beta \in \mathbb{F}$
- **3** Positive definiteness: $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$ and $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ if and only if $\mathbf{x} = \mathbf{0}$

A vector space equipped with an inner product is called an *inner product space*.

Example

- Standard inner product on \mathbb{R}^n : $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- Standard inner product on \mathbb{C}^n : $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i \overline{y}_i$ for $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$
- On the space of polynomials $\mathbb{P}_n(\mathbb{R})$: $\langle \boldsymbol{p}, \boldsymbol{q} \rangle = \int_{-1}^1 p(x) q(x) dx$ for $\boldsymbol{p}, \boldsymbol{q} \in \mathbb{P}_n(\mathbb{R})$

Proposition

Let V be an inner product space. Then $\mathbf{x} = \mathbf{0}$ if and only if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ for all $\mathbf{y} \in V$.

Proof.

Cauchy-Schwarz Inequality

Proposition

Let V be an inner product space. Then

$$|\langle \mathbf{x}, \mathbf{y}
angle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x}
angle} \sqrt{\langle \mathbf{y}, \mathbf{y}
angle}$$

for all $\mathbf{x}, \mathbf{y} \in V$.

Proof.

Proposition

Let V be an inner product space. Then $\langle \cdot, \cdot \rangle$ induces a norm on V via $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ for all $\mathbf{x} \in V$.

Proof

Proof continued

Adjoint

Definition

Let U, V be inner product spaces and $S: U \to V$ be a linear map. The *adjoint* S^* of S is the linear map $S^*: V \to U$ defined such that

$$\langle S\mathbf{u},\mathbf{v}
angle_V=\langle \mathbf{u},S^*\mathbf{v}
angle_U$$
 for all $\mathbf{u}\in U,\mathbf{v}\in V.$

Proposition

Let U, V be inner product spaces and $S: U \to V$ be a linear map. Then S^* is unique and linear.

Proof

Proof continued

Example

Define $S : \mathbb{R}^3 \to \mathbb{R}^2$ by $S\mathbf{x} = (2x_1 + x_3, -x_2)$. Then, for all $\mathbf{y} = (y_1, y_2) \in \mathbb{R}^2$ the defining equation for the adjoint operator leads to

Proposition

Let $A \in M_{m \times n}(\mathbb{F})$ be a matrix and $T_A \colon \mathbb{F}^n \to F^m \colon \mathbf{x} \mapsto A\mathbf{x}$. Then, $T_A^*(\mathbf{x}) = A^*\mathbf{x}$, where $A^* \in M_{n \times m}(\mathbb{F})$ with $(A^*)_{ij} = \overline{A_{ji}}$ for i = 1, ..., n and j = 1, ..., m.

In particular, if $\mathbb{F} = \mathbb{R}$, the adjoint of the matrix is given by its transpose, denoted A^T , and if $\mathbb{F} = \mathbb{C}$, it is given by its conjugate transpose, denoted A^* .

Proof.

Definition

A matrix $O \in M_n(\mathbb{R})$ is called *orthogonal* if its inverse is given by its transpose, i.e. $O^T O = OO^T = I$.

A matrix $U \in M_n(\mathbb{C})$ is called *unitary* if the inverse is given by the conjugate transpose, i.e. $U^*U = UU^* = I$.

Example

• Let $\varphi \in [0, 2\pi]$. Then

$$egin{pmatrix} \cos(arphi) & -\sin(arphi) \ \sin(arphi) & \cos(arphi) \end{pmatrix}$$

is an orthogonal matrix. What does it describe geometrically?

• The following is a unitary matrix:

$$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Definition

Let $A \in M_n(\mathbb{F})$. We call A self-adjoint if $A^* = A$. In the case $\mathbb{F} = \mathbb{R}$, such an A is called *symmetric* and if $\mathbb{F} = \mathbb{C}$, such an A is called *Hermitian*.

Orthogonality and Gram-Schmidt

Definition

Two vectors $\mathbf{x}, \mathbf{y} \in V$ are called *orthogonal* if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, denoted $\mathbf{x} \perp \mathbf{y}$. We call them *orthonormal* if additionally the vectors are normalized, i.e. $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$. A basis $\mathbf{x}_1, \ldots, \mathbf{x}_n$ of V is called *orthonormal basis (ONB)*, if the vectors are pairwise orthogonal and normalized.

Proposition

Let $\mathbf{x}_1, \ldots, \mathbf{x}_k \in V$ be orthonormal. Then the system of vectors is linearly independent.

Proof.

Proposition (Orthogonal Decomposition)

Let $\mathbf{x}, \mathbf{y} \in V$ with $\mathbf{y} \neq 0$. Then, there exist $c \in F$ and $\mathbf{z} \in V$ such that $\mathbf{x} = c\mathbf{y} + \mathbf{z}$ with $\mathbf{y} \perp \mathbf{z}$.

Given a basis we can obtain an ONB from it using the Gram-Schmidt algorithm by reiterating the orthogonal decomposition from above.

Proposition (Gram-Schmidt Algorithm)

Let $\mathbf{x}_1, \ldots, \mathbf{x}_n \in V$ be a system of linearly independent vectors. Define $\mathbf{y}_1 = \mathbf{x}_1 / \|\mathbf{x}_1\|$. For $i = 2, \ldots, n$ define \mathbf{y}_i inductively by

$$\mathbf{y}_i = \frac{\mathbf{x}_i - \sum_{k=1}^{i-1} \langle \mathbf{x}_i, \mathbf{y}_k \rangle \mathbf{y}_k}{\|\mathbf{x}_i - \sum_{k=1}^{i-1} \langle \mathbf{x}_i, \mathbf{y}_k \rangle \mathbf{y}_k\|}$$

Then the $\mathbf{y}_1, \ldots, \mathbf{y}_n$ are orthonormal and

$$\operatorname{span}\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}=\operatorname{span}\{\mathbf{y}_1,\ldots,\mathbf{y}_n\}.$$

The proof is omitted but can be found in the book.

Next time

- Eigenvalues and eigenvectors
- Matrix decompositions

References

Axler S. *Linear Algebra Done Right*. 3rd ed. Undergraduate Texts in Mathematics. Springer, 2015. Available from: https://link.springer.com/book/10.1007/978-3-319-11080-6

Treil S. *Linear Algebra Done Wrong*. 2017. Available from: https://www.math.brown.edu/streil/papers/LADW/LADW.html

