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Outline

Last time:

® |inear independence and bases
® |inear maps, null space, range, inverses

® Matrices as linear maps

Today:

® Determinants

® Inner product spaces
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Determinants
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Determinant

® The determinant is a function from M,«, — F, i.e. it is a function from the
entries of a square matrix to a real or complex number.

® The determinant has applications in solving linear systems, computing
eigenvalues, etc
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Example: 2 x 2 matrix

The determinant of a 2 x 2 matrix is

Y- k- oc

Nolenes de)r (A = (A
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Example: 3 x 3 matrix

There is a for finding the determinant of a 3 by 3 matrix:
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Cofactor expansion
For other n x n matrices, one can compute the determinant using
Definition (Cofactor expansion)

Let A= {ajk}4_1 be a nx nmatrix. Let M; denote the determinant of the
(n — 1) x (n — 1) matrix obtained by removing the j*" row and the k* column of A.

Foreachrow j=1,...,n
n .
Al = aj k(1Y M i
k=1
Similarly, for each column k=1,...,n

Al = aj (1Y M i

j=1

& The numbers G = (=1YTkM; 4 are called cofactors.
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The determinant of a diagonal matrix _or triangular matrix is the product of the entries
on the diagonal. Ell a ED\TE-I

D‘(
Sketch of proof
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Inverse of a matrix

Let A be an n x n invertible matrix and let C = {C; x 7 k=1 be its cofactor matrix.
Then

Al=_— T

Connection to last lecture: The matrix A is invertible if and only if the linear map
represented by the matrix is an isomorphism.
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Cramer’s rule

Corollary

Suppose A is an n x n invertible matrix. The linear system Ax = b has a unique
solution given by

x-—w i n
I_|A’7 PR )

where A; is the matrix obtained by replacing the it" column of A with b.
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Transpose of a matrix

Definition
The transpose of an m x n matrix A is the n X m matrix, denoted AT defined
entry-wise as {Afk} ={Axj}forj=1,...,mand k=1,...n (i.e. the rows of A are

the columns of AT and the columns of A are the rows of AT)
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Properties of the determinant

Proposition
|A| # 0 if and only if A is invertible

Proposition

Let A be an n x n real matrix.
@ If A has a zero column, then |A| = 0.
@® If A has two equal columns, then |A| = 0.

© If one column of A is a multiple of another, then |A| = 0.

O |AB| = |A]|B|
@ |eA| = a"|Al for a € F
6 |AT| = |A
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Inner product spaces J
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Complex numbers

Recall that for a complex number z = a + ib, we define the following:
® Real part: Re(z) = a,
® Imaginary part: Im(z) = b,
e Complex conjugate: Z = a — ib,

® Modulus: |z| = \/Re(2)2 + Im(2)? = Va2 + b2

We have |z|? = zz and Re(z) = Z52.
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el | X=X

)

Let V be an F-vector space. A function (-,-): V x V — F is called inner product on V
if the following holds:

® (Conjugate) symmetry: (x,y) = (y,x) for all x,y € V, where 3 denotes the
complex conjugate for a € C

@® Linearity in the first argument: (ax + By, z) = a(x,z) + 5(y,z) for all x,y,z € V
and o, 8 € F

© Positive definiteness: (x,x) > 0 and (x,x) =0 if and only if x =10

A vector space equipped with an inner product is called an inner product space.

&' sy Bz = C%U’P(éz O
“ =y L\A,DB F RALD
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e Standard inner product on R™: (x,y) = > ; x;y; for x,y € R”

e Standard inner product on C™: (x,y) = > 7 ; x;y; for x,y € C"

® On the space of polynomials P,(R): (p, q) = ﬁl p(x)q(x)dx for p,q € P,(R)
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Let V be an inner product space. Then x = 0 if and only if (x,y) =0 forally € V.

@Suppo%z =0 - Then. sine. B = O .
/C\I%LO(\& Y G\ = <OX"~6\ = C)(X.‘QB: O
Hoe cuvwd ae@

@ Sugypose Ly, ) =0 vme\J
A— holds Qbf\\a =L = L D=0 _

pum—) Y = O
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Cauchy-Schwarz Inequality

Proposition

Let V be an inner product space. Then

[ )| < V(% x)\/ (Y, y)

for all x,y € V.
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Let V be an inner product space. Then (-,-) induces a norm on V via ||x|| = \/(x,x)
forall x € V.

_
Notw L[ >0 My Ugjl=0 = Xx= O
T <»< >0 (¥, \c\:b = W= T

OcF |\ ¥ \\ |2\ )
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Adjoint

Definition

Let U, V be inner product spaces and S: U — V be a linear map. The adjoint S* of S

is the linear map $*: V — U defined such that —
(Su,v)y = (u,S*v)y forallue U,ve V.

~_
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Let U, V be inner product spaces and S: U — V be a linear map. Then S* is unique
and linear.

To  show umbo‘luw/vw_%%) suppose. U Va3 $-b-
LSt Y = Lw TN Bael Yy
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Define S: R3 — R? by Sx = (2x; + x3, —x2). Then, for all y = (y1, y») € R? the
defining equation for the adjoint operator leads to

L%\L’%BWE‘ = <@>‘\+\‘3 )'\L&\)(“a'*vkgwﬂé‘
T By ey, T Xaos X
= LL\L\ ,\La\\/\g\) (:a‘()l 3"33‘)"5}
= L\, g*tQ\
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Proposition
Let A € Myyun(F) be a matrix and Ta: F” — F™: x — Ax. Then, T;(x) = A*x,
where A* € My m(F) with (A*); = Ajifori=1,...,nand j=1,...,m.

In particular, if F = R, the adjoint of the matrix is given by its transpose,denoted AT,
and if F = C, it is given by its conjugate transpose, denoted A*.
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Definition

A matrix O € M,(R) is called orthogonal if its inverse is given by its transpose, i.e.
QZO =007 =1.

A matrix U € M,(C) is called unitary if the inverse is given by the conjugate
transpose, i.e. U*U = UU* = 1.
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® Let p €[0,27]. Then
cos(p) —sin(yp)
sin(p)  cos(p)
is an orthogonal matrix. What does it describe geometrically?

® The following is a unitary matrix:

=i o)

k= D_L\
TS
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Definition

Let A € M,y(F). We call A self-adjoint if A* = A. In the case F = R, such an A is
called symmetric and if F = C, such an A is called Hermitian

AT_‘; ﬂl: . SVOVV\N\V\\C
AT B - Yool
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Orthogonality and Gram-Schmidt

Definition

Two vectors x,y € V are called orthogonal if (x,y) = 0, denoted x L y. We call them
orthonormal if additionally the vectors are normalized, i.e. ||x|| = |ly|| = 1. A basis
X1,...,Xp of V is called orthonormal basis (ONB), if the vectors are pairwise

orthogonal and normalized.
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Let x1,...,Xx € V be orthonormal. Then the system of vectors is linearly independent.

R
Suppose O= i\a«; U,

= ole\‘o(j\i\:D 0

C
=\
G e, — Z | o{L\%\ \\X\\\a\ T Z;

do( L 345
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Proposition (Orthogonal Decomposition)

Let x,y € V with y # 0. Then, there exist ¢ € F and z € V such that x = cy + z with
y |z

Given a basis we can obtain an ONB from it using the Gram-Schmidt algorithm by
reiterating the orthogonal decomposition from above.
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Proposition (Gram-Schmidt Algorithm)

Let x1,...,%, € V be a system of linearly independent vectors. Define y1 = x1/||x1]|.
For i =2,...,n define y; inductively by

G = Sl (X0, Vi) Y
= = .
i — S5 (%7, Yyl

Then the yy,...,y, are orthonormal and

span{xi,...,Xn} = span{y1,...,¥n}

The proof is omitted but can be found in the book.
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Next time

® Eigenvalues and eigenvectors

® Matrix decompositions
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