Module 8: Linear Algebra II
 Operational math bootcamp

Emma Kroell

University of Toronto

July 22, 2022

Outline

Last time:

- Linear independence and bases
- Linear maps, null space, range, inverses
- Matrices as linear maps

Today:

- Determinants
- Inner product spaces

Determinants

Determinant

- The determinant is a function from $M_{n \times n} \rightarrow \mathbb{F}$, i.e. it is a function from the entries of a square matrix to a real or complex number.
- The determinant has applications in solving linear systems, computing eigenvalues, etc

Example: 2×2 matrix

The determinant of a 2×2 matrix is

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Notation:

$$
\operatorname{det}(A)=|A|
$$

Example: 3×3 matrix

There is a trick for finding the determinant of a 3 by 3 matrix:

$$
\begin{aligned}
\begin{array}{rrrrr}
a & b & a & b \\
d & e & d & e \\
d & h & d & \\
A:= \\
A & = & \\
& \operatorname{det}(A)=i+b f g+c d h \\
& -g e c-h f a-i d b
\end{array}
\end{aligned}
$$

Cofactor expansion

For other $n \times n$ matrices, one can compute the determinant using cofactor expansion.

Definition (Cofactor expansion)

Let $A=\left\{a_{j, k}\right\}_{j, k=1}^{n}$ be a $n \times n$ matrix. Let $M_{j, k}$ denote the determinant of the $(n-1) \times(n-1)$ matrix obtained by removing the $j^{\text {th }}$ row and the $k^{\text {th }}$ column of A.
For each row $j=1, \ldots, n$

$$
|A|=\sum_{k=1}^{n} a_{j, k}(-1)^{j+k} M_{j, k}
$$

Similarly, for each column $k=1, \ldots, n$

$$
|A|=\sum_{j=1}^{n} a_{j, k}(-1)^{j+k} M_{j, k}
$$

害 The numbers $C_{j, k}=(-1)^{j+k} M_{j, k}$ are called cofactors.

Proposition

The determinant of a diagonal matrix or triangular matrix is the product of the entries on the diagonal.

Sketch of proof

$$
\left[\begin{array}{lll}
\alpha_{1} & 0 & 0 \\
0 & \alpha_{2} & 0 \\
0 & 0 & \alpha_{3}
\end{array}\right]
$$

$$
\left.\alpha_{1}(-1)^{1+1} M_{1}\right)
$$

Inverse of a matrix

Theorem

Let A be an $n \times n$ invertible matrix and let $C=\left\{C_{j, k}\right\}_{j, k=1}^{n}$ be its cofactor matrix. Then

$$
A^{-1}=\frac{1}{|A|} C^{T}
$$

Connection to last lecture: The matrix A is invertible if and only if the linear map represented by the matrix is an isomorphism.

Cramer's rule

Corollary

Suppose A is an $n \times n$ invertible matrix. The linear system $A \mathbf{x}=\mathbf{b}$ has a unique solution given by

$$
x_{i}=\frac{\left|A_{i}\right|}{|A|}, \quad i, \ldots, n
$$

where A_{i} is the matrix obtained by replacing the $i^{\text {th }}$ column of A with \mathbf{b}.

Transpose of a matrix

Definition

The transpose of an $m \times n$ matrix A is the $n \times m$ matrix, denoted A^{T}, defined entry-wise as $\left\{A_{j, k}^{T}\right\}=\left\{A_{k, j}\right\}$ for $j=1, \ldots, m$ and $k=1, \ldots n$ (i.e. the rows of A are the columns of A^{T} and the columns of A are the rows of A^{T})

Properties of the determinant

Proposition

$|A| \neq 0$ if and only if A is invertible

Proposition

Let A be an $n \times n$ real matrix.
(1) If A has a zero column, then $|A|=0$.
(2) If A has two equal columns, then $|A|=0$.
(3) If one column of A is a multiple of another, then $|A|=0$.
(4) $|A B|=|A||B|$
(5) $|\alpha A|=\alpha^{n}|A|$ for $\alpha \in \mathbb{F}$
(6) $\left|A^{T}\right|=|A|$

Inner product spaces

Complex numbers

Recall that for a complex number $z=a+i b$, we define the following:

- Real part: $\operatorname{Re}(z)=a$,
- Imaginary part: $\operatorname{Im}(z)=b$,
- Complex conjugate: $\bar{z}=a-i b$,
- Modulus: $|z|=\sqrt{\operatorname{Re}(z)^{2}+\operatorname{Im}(z)^{2}}=\sqrt{a^{2}+b^{2}}$

We have $|z|^{2}=z \bar{z}$ and $\operatorname{Re}(z)=\frac{z+\overline{\bar{z}}}{2}$.

$$
x \in \mathbb{R}, x=\overparen{x}
$$

Definition
Let V be an \mathbb{F}-vector space. A function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{F}$ is called inner product on V if the following holds:
(1) (Conjugate) symmetry: $\langle\mathbf{x}, \mathbf{y}\rangle=\overline{\langle\mathbf{y}, \mathbf{x}\rangle}$ for all $\mathbf{x}, \mathbf{y} \in V$, where \bar{a} denotes the complex conjugate for $a \in \mathbb{C}$
(2) Linearity in the first argument: $\langle\alpha \mathbf{x}+\beta \mathbf{y}, \mathbf{z}\rangle=\alpha\langle\mathbf{x}, \mathbf{z}\rangle+\beta\langle\mathbf{y}, \mathbf{z}\rangle$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ and $\alpha, \beta \in \mathbb{F}$
(3) Positive definiteness: $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$ and $\langle\mathbf{x}, \mathbf{x}\rangle=0$ if and only if $\mathbf{x}=\mathbf{0}$

A vector space equipped with an inner product is called an inner product space.

$$
\begin{aligned}
\langle x, \alpha y+\beta z\rangle & =\langle\alpha y+\beta z, x\rangle \\
& =\bar{\alpha}\langle x, y\rangle+\overline{+\beta}\langle x, z\rangle \\
\text { july 22,2022 } & =\overline{15 / 36}
\end{aligned}
$$

Example

- Standard inner product on $\mathbb{R}^{n}:\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{n} x_{i} y_{i}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$
- Standard inner product on $\mathbb{C}^{n}:\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{n} x_{i} \bar{y}_{i}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$
- On the space of polynomials $\mathbb{P}_{n}(\mathbb{R}):\langle\boldsymbol{p}, \boldsymbol{q}\rangle=\int_{-1}^{1} p(x) q(x) \mathrm{d} x$ for $\boldsymbol{p}, \boldsymbol{q} \in \mathbb{P}_{n}(\mathbb{R})$

Proof.
(E) Suppose $x=0$. Then since $0 x=0$

Therefore $\langle x, y\rangle=\langle 0 x, y\rangle=0\langle x, y\rangle=0$.
for any $y \in V$.
(5) Suppose $(x, y)=0 \quad \forall y \in V$.

Then it holds for $y=x \stackrel{ }{\Rightarrow}\langle x, x\rangle=0$

$$
\Rightarrow x=0
$$

Cauchy-Schwarz Inequality

Proposition

Let V be an inner product space. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq \sqrt{\langle\mathbf{x}, \mathbf{x}\rangle} \sqrt{\langle\mathbf{y}, \mathbf{y}\rangle}
$$

for all $\mathbf{x}, \mathbf{y} \in V$.

Proof.
Take $t \in \mathbb{F} . \quad x, y \in V$

$$
\begin{aligned}
0 \leqslant\langle x-t y, x-t y\rangle= & \langle x, x\rangle-t\langle y, x\rangle \\
& -t\langle x, y\rangle+|t|^{2}\langle y, y\rangle
\end{aligned}
$$

Choose $t=\frac{\langle x, y\rangle}{\langle y, y\rangle}$

$$
\begin{aligned}
0 & =\langle x, x\rangle-2 \frac{\left(\left.\langle x, y\rangle\right|^{2}\right.}{\langle y, y\rangle}+\frac{\left.(x, y)\right|^{2}}{\langle y, y\rangle^{2}}(y, y) \\
& =\langle x, x\rangle-\frac{\left.|2 x, y|\right|^{2}}{\langle y, y\rangle}
\end{aligned}
$$

$$
\therefore|\langle x, y\rangle|^{2} \leq\langle x, x\rangle\langle y, y\rangle
$$

Let V be an inner product space. Then $\langle\cdot, \cdot\rangle$ induces a norm on V via $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$ for all $\mathrm{x} \in V$.

Proof
Norm: $\|x\| \geq 0 \forall x,\|x\|=0 \Leftrightarrow x=0$
IP: $\langle x, x\rangle \geq 0 \quad(x, x\rangle=0 \Leftrightarrow x=0$
$\alpha \in F\|\alpha x\|=|\alpha|\|x\| \mid$
IP: $\|\alpha x\|=\sqrt{\langle\alpha x, \alpha x\rangle}=\sqrt{|\alpha|^{2}\langle x, x\rangle}$
$\alpha \in \mathbb{C}: \alpha \bar{\alpha}=|\alpha|^{2} \quad \Rightarrow|\alpha| \sqrt{(x, x)}$

Proof continued

$$
\begin{aligned}
x_{n} \epsilon^{U}\|x+y\|^{2} & =\langle x+y, x+y\rangle \\
& =\langle x, x\rangle+\langle y, x\rangle+\langle x, y\rangle+\langle y, y\rangle \\
& =\|x\|^{2}+2 \operatorname{Re}\langle x, y\rangle+\|y\|^{2} \\
& \leq\|x\|^{2}+2|L x, y\rangle \mid+\|y\|^{2} \\
& \leq\|x\|^{2}+2\|x\|\|y\|^{2}+\|y\|^{2} \\
& \leq(\|x\|+\| y())^{2}
\end{aligned}
$$

Adjoint

Definition

Let U, V be inner product spaces and $S: U \rightarrow V$ be a linear map. The adjoint S^{*} of S is the linear map $S^{*}: V \rightarrow U$ defined such that

$$
\langle S \mathbf{u}, \mathbf{v}\rangle_{V}=\left\langle\mathbf{u}, S^{*} \mathbf{v}\right\rangle_{U} \quad \text { for all } \mathbf{u} \in U, \mathbf{v} \in V
$$

Proposition
Let U, V be inner product spaces and $S: U \rightarrow V$ be a linear map. Then S^{*} is unique and linear.

Proof
To show uniqueness, suppose $T: V \rightarrow U$ s. V.

$$
\begin{aligned}
& \langle S u, v\rangle=\langle u, T v\rangle \quad \forall u \in u, \forall v \in V \\
& \| \\
& \left\langle u, S^{*} v\right\rangle
\end{aligned}
$$

Using conjugate symmetry, $S^{*}=T$

Proof continued

$$
\begin{aligned}
\left\langle u, s^{*}(\alpha v+w)\right\rangle & =(S u, \alpha v+w) \\
& =\alpha(S u, v)+\langle\delta u, w\rangle \\
& =\left\langle u, \alpha s^{*} v\right\rangle+\left\langle u, s^{*} w\right) \\
& =\left(u, \alpha s^{*} v+S^{*} w\right\rangle
\end{aligned}
$$

Example
Define $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $S \mathbf{x}=\left(2 x_{1}+x_{3},-x_{2}\right)$. Then, for all $\mathbf{y}=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$ the defining equation for the adjoint operator leads to

$$
\begin{aligned}
\langle S x, y\rangle_{R_{2}^{2}} & =\left(\left(2 x_{1}+x_{3},-x_{2}\right),\left(y_{1}, y_{2}\right)\right)_{\mathbb{T}} \\
& =2 x_{1} y_{1}+x_{3} y_{1}-x_{2} y_{2} \\
& =\left\langle\left(x_{1}, x_{2}, x_{3}\right),\left(2 y_{1},-y_{2}, y_{1}\right)\right)_{R_{3}} \\
& =\left\langle x_{1} S^{*} y\right) \\
& \therefore S^{*} y=\left(2 y_{1}-y_{2}, y_{1}\right)_{2,202}
\end{aligned}
$$

Proposition

Let $A \in M_{m \times n}(\mathbb{F})$ be a matrix and $T_{A}: \mathbb{F}^{n} \rightarrow F^{m}: \mathbf{x} \mapsto A \mathbf{x}$. Then, $T_{A}^{*}(\mathbf{x})=A^{*} \mathbf{x}$, where $A^{*} \in M_{n \times m}(\mathbb{F})$ with $\left(A^{*}\right)_{i j}=\overline{A_{j i}}$ for $i=1, \ldots, n$ and $j=1, \ldots, m$.

In particular, if $\mathbb{F}=\mathbb{R}$, the adjoint of the matrix is given by its transpose, denoted A^{T}, and if $\mathbb{F}=\mathbb{C}$, it is given by its conjugate transpose, denoted A^{*}.

Proof.

Definition

A matrix $O \in M_{n}(\mathbb{R})$ is called orthogonal if its inverse is given by its transpose, i.e. $O^{\top} O=O O^{T}=I$.

A matrix $U \in M_{n}(\mathbb{C})$ is called unitary if the inverse is given by the conjugate transpose, i.e. $U^{*} U=U U^{*}=I$.

Example

- Let $\varphi \in[0,2 \pi]$. Then

$$
\left(\begin{array}{cc}
\cos (\varphi) & -\sin (\varphi) \\
\sin (\varphi) & \cos (\varphi)
\end{array}\right)
$$

is an orthogonal matrix. What does it describe geometrically?

- The following is a unitary matrix:

$$
u=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

Definition

Let $A \in M_{n}(\mathbb{F})$. We call A self-adjoint if $A^{*}=A$. In the case $\mathbb{F}=\mathbb{R}$, such an A is called symmetric and if $\mathbb{F}=\mathbb{C}$, such an A is called Hermitian.

Orthogonality and Gram-Schmidt

Definition

Two vectors $\mathbf{x}, \mathbf{y} \in V$ are called orthogonal if $\langle\mathbf{x}, \mathbf{y}\rangle=0$, denoted $\mathbf{x} \perp \mathbf{y}$. We call them orthonormal if additionally the vectors are normalized, i.e. $\|\mathbf{x}\|=\|\mathbf{y}\|=1$. A basis $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ of V is called orthonormal basis (ONB), if the vectors are pairwise orthogonal and normalized.

Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \in V$ be orthonormal. Then the system of vectors is linearly independent.
Proof.
Suppose $O=\sum_{i=1}^{k} \alpha_{i} \gamma_{i}$

$$
\begin{aligned}
\Delta 0 & =\left\|\sum_{i=1}^{k} \alpha_{i} x_{i}\right\|^{2} \\
& =\left\langle\sum_{i=1}^{k} \alpha_{i} x_{i}, \sum_{i=1}^{k} \alpha_{i} x_{i}\right\rangle \\
& \left.=\sum_{i j j}^{k} L \alpha_{i} x_{i}, \alpha_{j} x_{j}\right\rangle \\
& =\sum_{-=1}^{k}\left|\alpha_{i}\right|^{2}\left\|x_{i}\right\|^{\alpha}+\sum_{i, j=1}^{n} \alpha_{i} \cdot \bar{\alpha}_{j}\left\langle x_{i}, x_{j}\right\rangle
\end{aligned}
$$

$=\sum_{i=1}^{n}\left|\alpha_{i}\right|^{2}$

$$
\Rightarrow \alpha_{i}=0
$$

Proposition (Orthogonal Decomposition)

Let $\mathbf{x}, \mathbf{y} \in V$ with $\mathbf{y} \neq 0$. Then, there exist $c \in F$ and $\mathbf{z} \in V$ such that $\mathbf{x}=c \mathbf{y}+\mathbf{z}$ with $\mathbf{y} \perp \mathbf{z}$.

Given a basis we can obtain an ONB from it using the Gram-Schmidt algorithm by reiterating the orthogonal decomposition from above.

Proposition (Gram-Schmidt Algorithm)

Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in V$ be a system of linearly independent vectors. Define $\mathbf{y}_{1}=\mathbf{x}_{1} /\left\|\mathbf{x}_{1}\right\|$.
For $i=2, \ldots, n$ define \mathbf{y}_{j} inductively by

$$
\mathbf{y}_{i}=\frac{\mathbf{x}_{i}-\sum_{k=1}^{i-1}\left\langle\mathbf{x}_{i}, \mathbf{y}_{k}\right\rangle \mathbf{y}_{k}}{\left\|\mathbf{x}_{i}-\sum_{k=1}^{i-1}\left\langle\mathbf{x}_{i}, \mathbf{y}_{k}\right\rangle \mathbf{y}_{k}\right\|}
$$

Then the $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$ are orthonormal and

$$
\operatorname{span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}=\operatorname{span}\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right\}
$$

The proof is omitted but can be found in the book.

Next time

- Eigenvalues and eigenvectors
- Matrix decompositions

References

Axler S. Linear Algebra Done Right. 3rd ed. Undergraduate Texts in Mathematics. Springer, 2015. Available from:
https://link.springer.com/book/10.1007/978-3-319-11080-6
Treil S. Linear Algebra Done Wrong. 2017. Available from:
https://www.math.brown.edu/streil/papers/LADW/LADW.html

