Exercises for Module 9: Linear Algebra III

1. Let $A, B \in M_{n}(\mathbb{F})$ be similar matrices. Show that their characteristic polynomials coincide.
2. Show that $A \in M_{n}(\mathbb{C})$ is invertible if and only if $0 \notin \sigma(A)$.
3. Suppose N is a nilpotent matrix. Show that $\sigma(N)=\{0\}$.
4. Let $A \in M_{n}(\mathbb{C})$ be an invertible matrix. Show that λ is an eigenvalue of A if and only if λ^{-1} is an eigenvalue of A^{-1}.
5. Suppose $A \in M_{n}(\mathbb{C})$ is Hermitian. Show that all the eigenvalues of A are real. Hint: Note that if \mathbf{x} is a normalized eigenvector of A with eigenvalue λ, then $\langle A \mathbf{x}, \mathbf{x}\rangle=\lambda$.
6. Let $A \in M_{n}(\mathbb{R})$. Show that the eigenvalues of $A^{T} A$ are non-negative.
