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Outline

Spectral theory and matrix decompositions:

® Eigenvalues and eigenvectors

Algebraic and geometric multiplicity of eigenvalues

® Jordan canonical form

Singular value decomposition

LU and QR decompositions
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Recall: connection between matrices and linear maps

Multiplication by a matrix defines a linear map

Let A € M,xn be a fixed matrix. Then, we can define a linear map T4: F" — F™ via
Ta(v) = Av, where we recall matrix vector multiplication (Av); = >, _; A vk for
i=1,...,m.

Given a bases for U and V, T : U — V can be written as a matrix

Let T € £(U, V) where U and V are vector spaces. Let uj,...,u, and vi,...,v,, be
bases for U and V respectively. The matrix of T with respect to these bases is the
m x n matrix M(T) with entries Ajj, i=1,...,m, j=1,...,n defined by

Tuk = Alkvl qFocoqF Amka.
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Eigenvalues

Definition
Given an operator A: V — V and a € I, X is called an eigenvalue of A if there exists
a non-zero vector v € V' \ {0} such that

Av = Av.

We call such v an eigenvector of A with eigenvalue A\. We call the set of all
eigenvalues of A spectrum of T and denote it by o(T).

Motivation in terms of linear maps: Let T: V — V be a linear map, where V is a
vector space. We would like to describe the action of this linear map in a particularly
“nice” way: such that T acts only by scaling, i.e. Tv; = \;v; where \; € ¥ for
i=1,...,n.
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Finding eigenvalues

® Rewrite Av = \v as

® Thus, if A is an eigenvalue, we can find the corresponding eigenvectors by finding
the null space of A — \/.

® The subspace null(A — A/) is called the eigenspace

® To find the eigenvalues of A, one must find the scalars A such that null(A — A/)
contains non-trivial vectors (i.e. not 0)

® Recall: We saw that T € L(U, v) is injective if and only if null T = {0}.

® Thus A is an eigenvector if and only if A— Al is not invertible.

® Recall: |A| # 0 if and only if A is invertible.

® Thus A is an eigenvector if and only if
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The following are equivalent

@ )\ € F is an eigenvalue of A,
® (A — M)v =0 has a non-trivial solution,
© |A—\|=0.
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Characteristic polynomial

Definition

If Aiis an n x n matrix, pa(\) = |A — Xl is a polynomial of degree n called the
characteristic polynomial of A.

To find the eigenvectors of A, one needs to find the roots of the characteristic
polynomial.
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Example

Find the eigenvalues of
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Multiplicity

Definition
The multiplicity of the root A in the characteristic polynomial is called the algebraic
multiplicity of the eigenvalue A. The dimension of the eigenspace null(A — \/) is called

the geometric multiplicity of the eigenvalue A.
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Definition (Similar matrices)
Square matrices A and B are called similar if there exists an invertible matrix S such
that

A= SBS 1.

Similar matrices have the same characteristic polynomials and hence the same
eigenvalues (see exercise).
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Suppose A is a square matrix with distinct eigenvalues A1,...,\n. Letvy,..., v, be
eigenvectors corresponding to these eigenvalues. Then v1,...,v, are linearly
independent.
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Proof continued
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If a A € M,(C) has n distinct eigenvalues, then A is diagonalizable. That is there
exists an invertible matrix S € M,(C) such that A= SDS~!, where D is a diagonal
matrix with the eigenvalues of A in the diagonal.

L4
3 Statistical Sciences
& UNIVERSITY OF TORONTO

July 25, 2022 13/32



Let A:V — V be an operator with n eigenvalues. A is diagonalizable if and only if for
each eigenvalue \, the geometric multiplicity of A and the algebraic multiplicity of A
are the same.
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Example: a diagonalizable matrix

1 2. . .
[8 J is diagonalizable.
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Example continued
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Example: a matrix that is not diagonalizable

1 1. . .
[O 1] is not diagonalizable.
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Let A € My(R) be a symmetric matrix. Then, there exists an orthogonal matrix
O € M,(R) such that A= ODOT, where D is a diagonal matrix with the eigenvalues
of A in the diagonal. Furthermore, all eigenvalues of A are real.

We can also state this for M,(C):

Let A € M,(C) be a Hermitian matrix. Then, there exists a unitary matrix U € M,(C)
such that A = UDU*, where D is a diagonal matrix with the eigenvalues of A in the
diagonal. Furthermore, all eigenvalues of A are real.
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Block matrices

Definition
A block matrix is a matrix that can be broken into sections called blocks, which are
smaller matrices.

O O OoON
OO N -
N R RO
H O R R
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Definition
A square matrix is called block diagonal if it can be written as a block matrix where the
main-diagonal blocks are all square matrices and the off-diagonal blocks are all zero.

The matrix
21 00
0 2 00
0 01O
0 0 21

is block diagonal.
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Definition
A vector v is called a generalized eigenvector of A corresponding to an eigenvalue X\ if
there exists k > 1 such that

(A= X)kv =0.

The set of generalized eigenvectors of an eigenvalue A (plus 0) is called the generalized
eigenspace of A.

The algebraic multiplicity of an eigenvalue X is the same as the dimension of the
corresponding generalized eigenspace.
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Theorem (Jordan decomposition theorem)

For any operator A there exists a basis such that A is block diagonal with blocks that

have eigenvalues on the diagonal and 1s on the upper off-diagonal. In other words, A
can be written in the form

Jh 0 ... 0
0 H ... 0
0 0 ... U

where the blocks J; on the main diagonal are Jordan block of the form

A1 0
[)\],[3 ﬂ, 0 X 1|, etc
0 0 A

This form is called Jordan canonical form.
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Connection to algebraic and geometric multiplicity:

® The algebraic multiplicity of an eigenvalue X is the number of times )\ appears on
the diagonal.

® The geometric multiplicity of A is the number of Jordan blocks associated with A.

Why is Jordan form useful?
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Singular value decomposition

e AT Ais symmetric
® therefore it is orthogonally diagonalizable and has real eigenvalues

e In fact, the eigenvalues are non-negative (exercise)

Definition

Let A be an m x n matrix. Let Aq,..., A\, be the eigenvalues of ATA. Then the
singular values of A are defined as

0-1:\/)‘77'”70-!1:\/;-
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Theorem (Singular value decomposition)

If A is an m X n matrix of rank k, then we can write
A=UzVvT
where ¥ is an m X n matrix of the form

[ Dixk Ok (n—k) ]
O(m—k)xk  O(m—k)x(n—k)]’

D is a diagonal matrix with the singular values of A, o1, ...,0k, on the diagonal and U
and V are both orthogonal matrices (of size m x m and n X n, respectively).
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Uses of SVD:

Differences between JCF and SVD:
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L U-decomposition

Definition
The LU-decomposition of a square matrix A is the factorization of A into a lower
triangular matrix L and an upper triangular matrix U as follows:

A=LU.

Why is this useful? Consider the linear system Ax =b
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Recall: orthonormal basis

Definition

Two vectors x,y € V are called orthogonal if (x,y) = 0, denoted x L y. We call them
orthonormal if additionally the vectors are normalized, i.e. ||x|| = |ly|| = 1. A basis
X1,...,X, of V is called orthonormal basis (ONB), if the vectors are pairwise

orthogonal and normalized.

Starting from a set of linearly independent vectors, we can construct another set of
vectors which are orthonormal and span the same space using the Gram-Schmidt
Algorithm.
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QRR-decomposition

Definition (@QR-decomposition)

The QR-decomposition of an m x n matrix A with linearly independent column vectors
is the factorization of A as follows:

A= QR,

where @ is an m X n matrix with orthonormal column vectors and R is an n X n
invertible upper triangular matrix.
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One obtains the factorization by applying the Gram-Schmidt algorithm to the columns
of A. Let uy,...,u, be the column vectors of A. Let qi,...,q, be the orthonormal
vectors obtained by applying Gram Schmidt. Then one can write:

ur = (ur,q1)qr + (U2, q2)q2 + ... + (U, qn)qp
uz = (U2, q2)q2 + ... + (Un, qn)qn

u, = <un7 qn>qn

Thus the orthonormal vectors obtained using Gram-Schmidt form the columns of Q,
while R is the terms needed to go between the columns of A and thsoe of @, i.e.

(U17CI1> <U2, q2> e <Un,Qn)
P 0 <U2,. q2) & <Um.qf7>
6 0 : (u,,,.q,,)
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Why use QR-decomposition?
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