Module 9: Linear Algebra III

Operational math bootcamp

Statistical Sciences
UNIVERSITY OF TORONTO

Emma Kroell
University of Toronto

July 25, 2022

Outline

Spectral theory and matrix decompositions:

- Eigenvalues and eigenvectors
- Algebraic and geometric multiplicity of eigenvalues
- Jordan canonical form
- Singular value decomposition
- $L U$ and $Q R$ decompositions

Recall: connection between matrices and linear maps

Multiplication by a matrix defines a linear map

Let $A \in M_{m \times n}$ be a fixed matrix. Then, we can define a linear map $T_{A}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ via $T_{A}(\mathbf{v})=A \mathbf{v}$, where we recall matrix vector multiplication $(A \mathbf{v})_{i}=\sum_{k=1}^{n} A_{i k} v_{k}$ for $i=1, \ldots, m$.

Given a bases for U and $V, T: U \rightarrow V$ can be written as a matrix

Let $T \in \mathcal{L}(U, V)$ where U and V are vector spaces. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ be bases for U and V respectively. The matrix of T with respect to these bases is the $m \times n$ matrix $\mathcal{M}(T)$ with entries $A_{i j}, i=1, \ldots, m, j=1, \ldots, n$ defined by

$$
T \mathbf{u}_{k}=A_{1 k} \mathbf{v}_{1}+\cdots+A_{m k} \mathbf{v}_{m}
$$

Eigenvalues

Definition

Given an operator $A: V \rightarrow V$ and $\alpha \in \mathbb{F}, \lambda$ is called an eigenvalue of A if there exists a non-zero vector $\mathbf{v} \in V \backslash\{\mathbf{0}\}$ such that

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

We call such \mathbf{v} an eigenvector of A with eigenvalue λ. We call the set of all eigenvalues of A spectrum of T and denote it by $\sigma(T)$.

Motivation in terms of linear maps: Let $T: V \rightarrow V$ be a linear map, where V is a vector space. We would like to describe the action of this linear map in a particularly "nice" way: such that T acts only by scaling, i.e. $T \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$ where $\lambda_{i} \in \mathbb{F}$ for $i=1, \ldots, n$.

Finding eigenvalues

- Rewrite $A \mathbf{v}=\lambda \mathbf{v}$ as
- Thus, if λ is an eigenvalue, we can find the corresponding eigenvectors by finding the null space of $A-\lambda I$.
- The subspace $\operatorname{null}(A-\lambda I)$ is called the eigenspace
- To find the eigenvalues of A, one must find the scalars λ such that null $(A-\lambda I)$ contains non-trivial vectors (i.e. not $\mathbf{0}$)
- Recall: We saw that $T \in \mathcal{L}(U, v)$ is injective if and only if null $T=\{\mathbf{0}\}$.
- Thus λ is an eigenvector if and only if $A-\lambda /$ is not invertible.
- Recall: $|A| \neq 0$ if and only if A is invertible.
- Thus λ is an eigenvector if and only if

Theorem

The following are equivalent
(1) $\lambda \in \mathbb{F}$ is an eigenvalue of A,
(2) $(A-\lambda I) \mathbf{v}=0$ has a non-trivial solution,
(3) $|A-\lambda I|=0$.

Characteristic polynomial

Definition

If A is an $n \times n$ matrix, $p_{A}(\lambda)=|A-\lambda I|$ is a polynomial of degree n called the characteristic polynomial of A.

To find the eigenvectors of A, one needs to find the roots of the characteristic polynomial.

Example

Find the eigenvalues of

$$
\left[\begin{array}{ll}
4 & -2 \\
5 & -3
\end{array}\right] .
$$

Multiplicity

Definition

The multiplicity of the root λ in the characteristic polynomial is called the algebraic multiplicity of the eigenvalue λ. The dimension of the eigenspace null $(A-\lambda I)$ is called the geometric multiplicity of the eigenvalue λ.

Definition (Similar matrices)

Square matrices A and B are called similar if there exists an invertible matrix S such that

$$
A=S B S^{-1} .
$$

Similar matrices have the same characteristic polynomials and hence the same eigenvalues (see exercise).

Theorem
Suppose A is a square matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be eigenvectors corresponding to these eigenvalues. Then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent.

Proof

Proof continued

Corollary

If a $A \in M_{n}(\mathbb{C})$ has n distinct eigenvalues, then A is diagonalizable. That is there exists an invertible matrix $S \in M_{n}(\mathbb{C})$ such that $A=S D S^{-1}$, where D is a diagonal matrix with the eigenvalues of A in the diagonal.

Theorem
Let $A: V \rightarrow V$ be an operator with n eigenvalues. A is diagonalizable if and only if for each eigenvalue λ, the geometric multiplicity of λ and the algebraic multiplicity of λ are the same.

Example: a diagonalizable matrix

$$
\left[\begin{array}{ll}
1 & 2 \\
8 & 1
\end{array}\right] \text { is diagonalizable. }
$$

Example continued

Example: a matrix that is not diagonalizable

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \text { is not diagonalizable. }
$$

Theorem

Let $A \in M_{n}(\mathbb{R})$ be a symmetric matrix. Then, there exists an orthogonal matrix $O \in M_{n}(\mathbb{R})$ such that $A=O D O^{T}$, where D is a diagonal matrix with the eigenvalues of A in the diagonal. Furthermore, all eigenvalues of A are real.

We can also state this for $M_{n}(\mathbb{C})$:
Let $A \in M_{n}(\mathbb{C})$ be a Hermitian matrix. Then, there exists a unitary matrix $U \in M_{n}(\mathbb{C})$ such that $A=U D U^{*}$, where D is a diagonal matrix with the eigenvalues of A in the diagonal. Furthermore, all eigenvalues of A are real.

Block matrices

Definition

A block matrix is a matrix that can be broken into sections called blocks, which are smaller matrices.

Example

$$
\left[\begin{array}{llll}
2 & 1 & 0 & 1 \\
0 & 2 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 2 & 1
\end{array}\right]
$$

Definition

A square matrix is called block diagonal if it can be written as a block matrix where the main-diagonal blocks are all square matrices and the off-diagonal blocks are all zero.

Example

The matrix

$$
\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 2 & 1
\end{array}\right]
$$

is block diagonal.

Definition

A vector \mathbf{v} is called a generalized eigenvector of A corresponding to an eigenvalue λ if there exists $k \geq 1$ such that

$$
(A-\lambda I)^{k} \mathbf{v}=0
$$

The set of generalized eigenvectors of an eigenvalue λ (plus $\mathbf{0}$) is called the generalized eigenspace of λ.

Proposition

The algebraic multiplicity of an eigenvalue λ is the same as the dimension of the corresponding generalized eigenspace.

Theorem (Jordan decomposition theorem)

For any operator A there exists a basis such that A is block diagonal with blocks that have eigenvalues on the diagonal and 1 s on the upper off-diagonal. In other words, A can be written in the form

$$
A=\left[\begin{array}{cccc}
J_{1} & 0 & \ldots & 0 \\
0 & J_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & J_{k}
\end{array}\right]
$$

where the blocks J_{i} on the main diagonal are Jordan block of the form

$$
[\lambda],\left[\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right],\left[\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right], \text { etc. }
$$

This form is called Jordan canonical form.

Connection to algebraic and geometric multiplicity:

- The algebraic multiplicity of an eigenvalue λ is the number of times λ appears on the diagonal.
- The geometric multiplicity of λ is the number of Jordan blocks associated with λ.

Why is Jordan form useful?

Singular value decomposition

- $A^{T} A$ is symmetric
- therefore it is orthogonally diagonalizable and has real eigenvalues
- In fact, the eigenvalues are non-negative (exercise)

Definition

Let A be an $m \times n$ matrix. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of $A^{T} A$. Then the singular values of A are defined as

$$
\sigma_{1}=\sqrt{\lambda_{1}}, \ldots, \sigma_{n}=\sqrt{\lambda_{n}}
$$

Theorem (Singular value decomposition)

If A is an $m \times n$ matrix of rank k, then we can write

$$
A=U \Sigma V^{T}
$$

where Σ is an $m \times n$ matrix of the form

$$
\left[\begin{array}{cc}
D_{k \times k} & 0_{k \times(n-k)} \\
0_{(m-k) \times k} & 0_{(m-k) \times(n-k)}
\end{array}\right],
$$

D is a diagonal matrix with the singular values of $A, \sigma_{1}, \ldots, \sigma_{k}$, on the diagonal and U and V are both orthogonal matrices (of size $m \times m$ and $n \times n$, respectively).

Uses of SVD:

Differences between JCF and SVD:

LU-decomposition

Definition

The $L U$-decomposition of a square matrix A is the factorization of A into a lower triangular matrix L and an upper triangular matrix U as follows:

$$
A=L U .
$$

Why is this useful? Consider the linear system $A \mathbf{x}=\mathbf{b}$

Recall: orthonormal basis

Definition

Two vectors $\mathbf{x}, \mathbf{y} \in V$ are called orthogonal if $\langle\mathbf{x}, \mathbf{y}\rangle=0$, denoted $\mathbf{x} \perp \mathbf{y}$. We call them orthonormal if additionally the vectors are normalized, i.e. $\|\mathbf{x}\|=\|\mathbf{y}\|=1$. A basis $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ of V is called orthonormal basis (ONB), if the vectors are pairwise orthogonal and normalized.

Starting from a set of linearly independent vectors, we can construct another set of vectors which are orthonormal and span the same space using the Gram-Schmidt Algorithm.

$Q R$-decomposition

Definition ($Q R$-decomposition)

The $Q R$-decomposition of an $m \times n$ matrix A with linearly independent column vectors is the factorization of A as follows:

$$
A=Q R,
$$

where Q is an $m \times n$ matrix with orthonormal column vectors and R is an $n \times n$ invertible upper triangular matrix.

One obtains the factorization by applying the Gram-Schmidt algorithm to the columns of A. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ be the column vectors of A. Let $\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}$ be the orthonormal vectors obtained by applying Gram Schmidt. Then one can write:

$$
\begin{aligned}
\mathbf{u}_{1} & =\left\langle\mathbf{u}_{1}, \mathbf{q}_{1}\right\rangle \mathbf{q}_{1}+\left\langle\mathbf{u}_{2}, \mathbf{q}_{2}\right\rangle \mathbf{q}_{2}+\ldots+\left\langle\mathbf{u}_{n}, \mathbf{q}_{n}\right\rangle \mathbf{q}_{n} \\
\mathbf{u}_{2} & =\left\langle\mathbf{u}_{2}, \mathbf{q}_{2}\right\rangle \mathbf{q}_{2}+\ldots+\left\langle\mathbf{u}_{n}, \mathbf{q}_{n}\right\rangle \mathbf{q}_{n} \\
& \vdots \\
\mathbf{u}_{n} & =\left\langle\mathbf{u}_{n}, \mathbf{q}_{n}\right\rangle \mathbf{q}_{n}
\end{aligned}
$$

Thus the orthonormal vectors obtained using Gram-Schmidt form the columns of Q, while R is the terms needed to go between the columns of A and thsoe of Q, i.e.

$$
R=\left[\begin{array}{cccc}
\left\langle\mathbf{u}_{1}, \mathbf{q}_{1}\right\rangle & \left\langle\mathbf{u}_{2}, \mathbf{q}_{2}\right\rangle & \ldots & \left\langle\mathbf{u}_{n}, \mathbf{q}_{n}\right\rangle \\
0 & \left\langle\mathbf{u}_{2}, \mathbf{q}_{2}\right\rangle & \ldots & \left\langle\mathbf{u}_{n}, \mathbf{q}_{n}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \left\langle\mathbf{u}_{n}, \mathbf{q}_{n}\right\rangle
\end{array}\right]
$$

Why use $Q R$-decomposition?

References

Howard Anton and Chris Rorres. Elementary Linear Algebra. 11th ed. Wiley, 2014
Axler S. Linear Algebra Done Right. 3rd ed. Undergraduate Texts in Mathematics. Springer, 2015. Available from:
https://link.springer.com/book/10.1007/978-3-319-11080-6
Treil S. Linear Algebra Done Wrong. 2017. Available from: https://www.math.brown.edu/streil/papers/LADW/LADW.html

