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Outline

Spectral theory and matrix decompositions:

• Eigenvalues and eigenvectors

• Algebraic and geometric multiplicity of eigenvalues

• Jordan canonical form

• Singular value decomposition

• LU and QR decompositions
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Recall: connection between matrices and linear maps

Multiplication by a matrix defines a linear map

Let A 2 Mm⇥n be a fixed matrix. Then, we can define a linear map TA : Fn ! Fm via
TA(v) = Av, where we recall matrix vector multiplication (Av)i =

Pn
k=1 Aikvk for

i = 1, . . . ,m.

Given a bases for U and V , T : U ! V can be written as a matrix

Let T 2 L(U,V ) where U and V are vector spaces. Let u1, . . . ,un and v1, . . . , vm be
bases for U and V respectively. The matrix of T with respect to these bases is the
m ⇥ n matrix M(T ) with entries Aij , i = 1, . . . ,m, j = 1, . . . , n defined by

Tuk = A1kv1 + · · ·+ Amkvm.
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Eigenvalues

Definition
Given an operator A : V ! V and ↵ 2 F, � is called an eigenvalue of A if there exists
a non-zero vector v 2 V \ {0} such that

Av = �v.

We call such v an eigenvector of A with eigenvalue �. We call the set of all
eigenvalues of A spectrum of T and denote it by �(T ).

Motivation in terms of linear maps: Let T : V ! V be a linear map, where V is a
vector space. We would like to describe the action of this linear map in a particularly
“nice” way: such that T acts only by scaling, i.e. Tvi = �ivi where �i 2 F for
i = 1, . . . , n.
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Finding eigenvalues

• Rewrite Av = �v as

• Thus, if � is an eigenvalue, we can find the corresponding eigenvectors by finding
the null space of A� �I .

• The subspace null(A� �I ) is called the eigenspace

• To find the eigenvalues of A, one must find the scalars � such that null(A� �I )
contains non-trivial vectors (i.e. not 0)

• Recall: We saw that T 2 L(U, v) is injective if and only if nullT = {0}.
• Thus � is an eigenvector if and only if A� �I is not invertible.

• Recall: |A| 6= 0 if and only if A is invertible.

• Thus � is an eigenvector if and only if
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Theorem
The following are equivalent

1 � 2 F is an eigenvalue of A,

2 (A� �I )v = 0 has a non-trivial solution,

3 |A� �I | = 0.
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Characteristic polynomial

Definition

If A is an n ⇥ n matrix, pA(�) = |A� �I | is a polynomial of degree n called the
characteristic polynomial of A.

To find the eigenvectors of A, one needs to find the roots of the characteristic
polynomial.
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Example

Find the eigenvalues of 
4 �2
5 �3

�
.
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Multiplicity

Definition
The multiplicity of the root � in the characteristic polynomial is called the algebraic

multiplicity of the eigenvalue �. The dimension of the eigenspace null(A� �I ) is called
the geometric multiplicity of the eigenvalue �.
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Definition (Similar matrices)

Square matrices A and B are called similar if there exists an invertible matrix S such
that

A = SBS
�1.

Similar matrices have the same characteristic polynomials and hence the same
eigenvalues (see exercise).
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Theorem
Suppose A is a square matrix with distinct eigenvalues �1, . . . ,�n. Let v1, . . . , vn be

eigenvectors corresponding to these eigenvalues. Then v1, . . . , vn are linearly

independent.

Proof
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Proof continued
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Proof continued
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Corollary

If a A 2 Mn(C) has n distinct eigenvalues, then A is diagonalizable. That is there

exists an invertible matrix S 2 Mn(C) such that A = SDS
�1

, where D is a diagonal

matrix with the eigenvalues of A in the diagonal.
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Theorem
Let A : V ! V be an operator with n eigenvalues. A is diagonalizable if and only if for

each eigenvalue �, the geometric multiplicity of � and the algebraic multiplicity of �
are the same.
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Example: a diagonalizable matrix


1 2
8 1

�
is diagonalizable.

.
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Example continued

July 25, 2022 16 / 32

A- +31 = (4g 2,) ~> (%)

⇐ b) (E) =@ )
( 1

,
- 2) spans null (A -131)

A- 5=1 = f) → J )
( 1,2) spans nullLA- SI)



Example continued
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Example: a matrix that is not diagonalizable


1 1
0 1

�
is not diagonalizable.

.
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Theorem

Let A 2 Mn(R) be a symmetric matrix. Then, there exists an orthogonal matrix

O 2 Mn(R) such that A = ODO
T
, where D is a diagonal matrix with the eigenvalues

of A in the diagonal. Furthermore, all eigenvalues of A are real.

We can also state this for Mn(C):
Let A 2 Mn(C) be a Hermitian matrix. Then, there exists a unitary matrix U 2 Mn(C)
such that A = UDU

⇤, where D is a diagonal matrix with the eigenvalues of A in the
diagonal. Furthermore, all eigenvalues of A are real.
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Block matrices

Definition
A block matrix is a matrix that can be broken into sections called blocks, which are
smaller matrices.

Example
2

664

2 1 0 1
0 2 1 1
0 0 1 0
0 0 2 1

3

775
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Definition
A square matrix is called block diagonal if it can be written as a block matrix where the
main-diagonal blocks are all square matrices and the o↵-diagonal blocks are all zero.

Example

The matrix 2

664

2 1 0 0
0 2 0 0
0 0 1 0
0 0 2 1

3

775

is block diagonal.
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Definition
A vector v is called a generalized eigenvector of A corresponding to an eigenvalue � if
there exists k � 1 such that

(A� �I )kv = 0.

The set of generalized eigenvectors of an eigenvalue � (plus 0) is called the generalized

eigenspace of �.

Proposition

The algebraic multiplicity of an eigenvalue � is the same as the dimension of the
corresponding generalized eigenspace.

July 25, 2022 21 / 32



Theorem (Jordan decomposition theorem)

For any operator A there exists a basis such that A is block diagonal with blocks that

have eigenvalues on the diagonal and 1s on the upper o↵-diagonal. In other words, A

can be written in the form

A =

2

6664

J1 0 . . . 0
0 J2 . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . Jk

3

7775

where the blocks Ji on the main diagonal are Jordan block of the form

⇥
�
⇤
,


� 1
0 �

�
,

2

4
� 1 0
0 � 1
0 0 �

3

5 , etc.

This form is called Jordan canonical form.
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Connection to algebraic and geometric multiplicity:

• The algebraic multiplicity of an eigenvalue � is the number of times � appears on
the diagonal.

• The geometric multiplicity of � is the number of Jordan blocks associated with �.

Why is Jordan form useful?
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Singular value decomposition

• A
T
A is symmetric

• therefore it is orthogonally diagonalizable and has real eigenvalues

• In fact, the eigenvalues are non-negative (exercise)

Definition

Let A be an m ⇥ n matrix. Let �1, . . . ,�n be the eigenvalues of AT
A. Then the

singular values of A are defined as

�1 =
p

�1, . . . ,�n =
p
�n.
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Theorem (Singular value decomposition)

If A is an m ⇥ n matrix of rank k , then we can write

A = U⌃V T

where ⌃ is an m ⇥ n matrix of the form


Dk⇥k 0k⇥(n�k)

0(m�k)⇥k 0(m�k)⇥(n�k)

�
,

D is a diagonal matrix with the singular values of A, �1, . . . ,�n, on the diagonal and U

and V are both orthogonal matrices (of size m ⇥ n and n ⇥ n, respectively).
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Uses of SVD:

Di↵erences between JCF and SVD:
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• numerical applications
• U

,

V are orthogonal so the basis transformationhas nice numerical properties

• JCF has important theoretic applications
• JCF isn't fully diagonal
• SVD has nice numerical properties



LU-decomposition

Definition
The LU-decomposition of a square matrix A is the factorization of A into a lower
triangular matrix L and an upper triangular matrix U as follows:

A = LU.

Why is this useful? Consider the linear system Ax = b

July 25, 2022 27 / 32

Lux -_ b

solve : Ly=b and then Ux=y
A- ✗ =b ,

,

A-⇐b2
,

- - -

,



Recall: orthonormal basis

Definition

Two vectors x, y 2 V are called orthogonal if hx, yi = 0, denoted x ? y. We call them
orthonormal if additionally the vectors are normalized, i.e. kxk = kyk = 1. A basis
x1, . . . , xn of V is called orthonormal basis (ONB), if the vectors are pairwise
orthogonal and normalized.

Starting from a set of linearly independent vectors, we can construct another set of
vectors which are orthonormal and span the same space using the Gram-Schmidt

Algorithm.
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QR-decomposition

Definition (QR-decomposition)

The QR-decomposition of an m⇥ n matrix A with linearly independent column vectors
is the factorization of A as follows:

A = QR ,

where Q is an m ⇥ n matrix with orthonormal column vectors and R is an n ⇥ n

invertible upper triangular matrix.
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One obtains the factorization by applying the Gram-Schmidt algorithm to the columns
of A. Let u1, . . . ,un be the column vectors of A. Let q1, . . . ,qn be the orthonormal
vectors obtained by applying Gram Schmidt. Then one can write:

u1 = hu1,q1iq1 + hu2,q2iq2 + . . .+ hun,qniqn
u2 = hu2,q2iq2 + . . .+ hun,qniqn
...

un = hun,qniqn

Thus the orthonormal vectors obtained using Gram-Schmidt form the columns of Q,
while R is the terms needed to go between the columns of A and thsoe of Q, i.e.

R =

2

6664

hu1,q1i hu2,q2i . . . hun,qni
0 hu2,q2i . . . hun,qni
...

...
. . .

...
0 0 . . . hun,qni

3

7775
.
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Why use QR-decomposition?
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A ✗ = b

QRX = b

⇒ Qy
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