Module 9: Linear Algebra III

Operational math bootcamp

Statistical Sciences
UNIVERSITY OF TORONTO

Emma Kroell
University of Toronto

July 25, 2022

Outline

Spectral theory and matrix decompositions:

- Eigenvalues and eigenvectors
- Algebraic and geometric multiplicity of eigenvalues
- Jordan canonical form
- Singular value decomposition
- $L U$ and $Q R$ decompositions

Recall: connection between matrices and linear maps

Multiplication by a matrix defines a linear map

Let $A \in M_{m \times n}$ be a fixed matrix. Then, we can define a linear map $T_{A}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ via $T_{A}(\mathbf{v})=A \mathbf{v}$, where we recall matrix vector multiplication $(A \mathbf{v})_{i}=\sum_{k=1}^{n} A_{i k} v_{k}$ for $i=1, \ldots, m$.

Given a bases for U and $V, T: U \rightarrow V$ can be written as a matrix

Let $T \in \mathcal{L}(U, V)$ where U and V are vector spaces. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ be bases for U and V respectively. The matrix of T with respect to these bases is the $m \times n$ matrix $\mathcal{M}(T)$ with entries $A_{i j}, i=1, \ldots, m, j=1, \ldots, n$ defined by

$$
T \mathbf{u}_{k}=A_{1 k} \mathbf{v}_{1}+\cdots+A_{m k} \mathbf{v}_{m}
$$

Eigenvalues

Definition

Given an operator $A: V \rightarrow V$ and $\alpha \in \mathbb{F}, \lambda$ is called an eigenvalue of A if there exists a non-zero vector $\mathbf{v} \in V \backslash\{\mathbf{0}\}$ such that

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

We call such \mathbf{v} an eigenvector of A with eigenvalue λ. We call the set of all eigenvalues of A spectrum of T and denote it by $\sigma(T)$.

Motivation in terms of linear maps: Let $T: V \rightarrow V$ be a linear map, where V is a vector space. We would like to describe the action of this linear map in a particularly "nice" way: such that T acts only by scaling, i.e. $T \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$ where $\lambda_{i} \in \mathbb{F}$ for $i=1, \ldots, n$.

Finding eigenvalues

- Rewrite $A \mathbf{v}=\lambda \mathbf{v}$ as $(A-\lambda I) v=0$.
- Thus, if λ is an eigenvalue, we can find the corresponding eigenvectors by finding the null space of $A-\lambda I$.
- The subspace null $(A-\lambda I)$ is called the eigenspace
- To find the eigenvalues of A, one must find the scalars λ such that null $(A-\lambda I)$ contains non-trivial vectors (i.e. not $\mathbf{0}$)
- Recall: We saw that $T \in \mathcal{L}(U, \mathbf{V})$ is injective if and only if null $T=\{\mathbf{0}\}$.
- Thus λ is an eigenvector if and only if $A-\lambda I$ is not invertible.
- Recall: $|A| \neq 0$ if and only if A is invertible.
- Thus λ is an eigenvector if and only if $|A-\lambda I|=0$.

$$
\operatorname{det}(A-\lambda I)=0
$$

Theorem

The following are equivalent
(1) $\lambda \in \mathbb{F}$ is an eigenvalue of A,
(2) $(A-\lambda I) \mathbf{v}=0$ has a non-trivial solution,
(3) $|A-\lambda I|=0$.

Characteristic polynomial

$$
|A-\lambda I|=0
$$

Definition

If A is an $n \times n$ matrix, $p_{A}(\lambda)=|A-\lambda I|$ is a polynomial of degree n called the characteristic polynomial of A.

To find the eigenvectors of A, one needs to find the roots of the characteristic polynomial.

Example

Find the eigenvalues of

$$
A=\left[\begin{array}{ll}
4 & -2 \\
5 & -3
\end{array}\right]
$$

$$
\begin{aligned}
0 & =|A-\lambda I| \\
& =\left|\begin{array}{c}
4-\lambda-2 \\
5
\end{array}\right| \\
& =(4-\lambda)(-3-\lambda)+10 \\
& =\lambda^{2}-\lambda-2 \\
& =(\lambda-2)(\lambda+1)
\end{aligned}
$$

$$
\therefore \lambda=-1,2
$$

Multiplicity

$$
p(\lambda)=(\lambda-1)^{2}(\lambda-2)(\lambda+3) 4
$$

Definition

The multiplicity of the root λ in the characteristic polynomial is called the algebraic multiplicity of the eigenvalue λ. The dimension of the eigenspace null $(A-\lambda I)$ is called the geometric multiplicity of the eigenvalue λ.

Definition (Similar matrices)

Square matrices A and B are called similar if there exists an invertible matrix S such that

$$
A=S B S^{-1} .
$$

Similar matrices have the same characteristic polynomials and hence the same eigenvalues (see exercise).

Theorem
Suppose A is a square matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be eigenvectors corresponding to these eigenvalues. Then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent.

Proof
By induction on n.
Base case: $n=1$. So there is 1 eigenvalue $\lambda_{1} \&$ 1 eigenvector v_{1}. This is trivial, since any non-zero vecter is lineorly independent.
${ }^{\text {B }}$ Stan \qquad

Proof continued
Inductive hypothesis: Suppose the claim holds for $k \geq 1$. Then $v_{1,}, \ldots, v_{k}$ corresponding to $k_{1}, \ldots, \lambda_{k}$ (which are distinct) are linearly independent. Suppose λ_{K+1} is an eigenvalue for A with $\lambda_{1}, \ldots . \lambda_{k} \neq \lambda_{k+1}$ and v_{k+i} is corresponding
eignvectas. eigenvector.

$$
\text { Let } O=\sum_{i=1}^{k_{t}} \alpha_{i} v_{i} \otimes \alpha_{i} \in \mathbb{F}
$$

$$
\begin{aligned}
\operatorname{Apply}\left(A-\lambda_{k+1} I\right. & I \\
\Rightarrow 0 & =\sum_{i=1} \alpha_{i}\left(A-\lambda_{k+1} I\right) v_{i}
\end{aligned}
$$

Proof continued

$$
\begin{aligned}
\Rightarrow 0 & =\sum_{i=1}^{k} \alpha_{i}\left(A v_{i}-\lambda_{k+1} v_{i}\right)+\alpha_{k+1}\left(A-\lambda_{k+1} J\right) v_{k_{1}} \\
& =\sum_{i=1}^{k} \alpha_{i}\left(\lambda_{i}-\lambda_{k+1}\right) v_{i}+\alpha_{k+1}\left(\lambda_{k+1}-\lambda_{k+}\right) v_{k_{1+1}} \\
& =\sum_{i=1}^{k} \alpha_{i}\left(\lambda_{i}-\lambda_{k+1}\right) v_{i}
\end{aligned}
$$

$$
\therefore \alpha_{i}(\underbrace{\lambda_{i}-\lambda_{k+1}}_{\neq 0})=0 \quad \forall i \text { since } v_{\text {lin }}, \ldots, v_{k} \text { are }
$$

$$
\therefore v_{1}, \ldots, v_{k}, v_{k t} \text {, are lin. ind. }
$$

$$
0=\alpha_{k_{t 1}} v_{k+1}
$$

Corollary
If a $A \in M_{n}(\mathbb{C})$ has n distinct eigenvalues, then A is diagonalizable. That is there exists an invertible matrix $S \in M_{n}(\mathbb{C})$ such that $A=S D S^{-1}$, where D is a diagonal matrix with the eigenvalues of A in the diagonal.
A is $n \times n$ matrix
Theorem
Let $A: V \rightarrow V$ be an operator with n eigenvalues. A is diagonalizable if and only if for each eigenvalue λ, the geometric multiplicity of λ and the algebraic multiplicity of λ are the same.

$$
\operatorname{null}(A-\lambda I)
$$

$$
D=\left(\begin{array}{lll}
\lambda_{1} & \lambda_{1}^{0} \\
0 & & \\
0 & & x_{2}
\end{array}\right)
$$

Example: a diagonalizable matrix
$A=$
$\left[\begin{array}{ll}1 & 2 \\ 8 & 1\end{array}\right]$ is diagonalizable.
Find eigenvalues:

$$
\begin{aligned}
O=|A-\lambda I|=\left|\begin{array}{cc}
1-\lambda & 2 \\
8 & 1-\lambda
\end{array}\right| & =(1-\lambda)^{2}-16 \\
& =\lambda^{2}-2 \lambda-15 \\
& =(\lambda-5)(\lambda+3)
\end{aligned}
$$

Next: find eigenvectors

Example continued

$$
\begin{gathered}
A+3 I=\left(\begin{array}{ll}
4 & 2 \\
8 & 4
\end{array}\right) \sim\left(\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right) \\
\left(\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
(1,-2) \operatorname{spans} \operatorname{null}(A+3 I) \\
A-5 I= \\
\left(\begin{array}{cc}
-4 & 2 \\
8 & -4
\end{array}\right) \sim\left(\begin{array}{cc}
-2 & 1 \\
0 & 0
\end{array}\right) \\
\\
(1,2) \text { spans null }(A-5 I)
\end{gathered}
$$

Example continued

$$
\begin{array}{r}
A=\left(\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right) \\
S
\end{array} \underset{\left(\begin{array}{cc}
5 & 0 \\
0 & -3
\end{array}\right)}{\left(\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right)^{-1}}
$$

Example: a matrix that is not diagonalizable

$$
\begin{gathered}
B=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \text { is not diagonalizable. } \\
0=|B-\lambda I|=\left|\begin{array}{cc}
1-\lambda & 1 \\
0 & l-\lambda
\end{array}\right|=(1-\lambda)^{2} \\
\lambda=1, \text { multiplicity } \alpha \\
B-I=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \Rightarrow \text { null }(B-I) \text { is } \\
\therefore \lambda=1 \text { panned by }(0,1) \text { geometric multhplicitiad, of } 1 \\
\therefore \lambda 2022
\end{gathered}
$$

Theorem

Let $A \in M_{n}(\mathbb{R})$ be a symmetric matrix. Then, there exists an orthogonal matrix $O \in M_{n}(\mathbb{R})$ such that $A=O D O^{T}$, where D is a diagonal matrix with the eigenvalues of A in the diagonal. Furthermore, all eigenvalues of A are real.

We can also state this for $M_{n}(\mathbb{C})$:
Let $A \in M_{n}(\mathbb{C})$ be a Hermitian matrix. Then, there exists a unitary matrix $U \in M_{n}(\mathbb{C})$ such that $A=U D U^{*}$, where D is a diagonal matrix with the eigenvalues of A in the diagonal. Furthermore, all eigenvalues of A are real.

Block matrices

Definition

A block matrix is a matrix that can be broken into sections called blocks, which are smaller matrices.

Example

$$
\begin{aligned}
& {\left[\begin{array}{cc:cc}
2 & 1 & 0 & 1 \\
0 & 2 & 1 & 1 \\
0 & 0 & 1 & - \\
0 & 0 & 1 & 2 \\
1
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]} \\
& A=\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right), B=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), C=0
\end{aligned}
$$

Definition

A square matrix is called block diagonal if it can be written as a block matrix where the main-diagonal blocks are all square matrices and the off-diagonal blocks are all zero.

Example

The matrix

$$
\left[\begin{array}{cc:cc}
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 \\
0 & 0 & 2 & 1
\end{array}\right]
$$

is block diagonal.

Definition

A vector \mathbf{v} is called a generalized eigenvector of A corresponding to an eigenvalue λ if there exists $k \geq 1$ such that

$$
(A-\lambda I)^{k} \mathbf{v}=0
$$

The set of generalized eigenvectors of an eigenvalue λ (plus $\mathbf{0}$) is called the generalized eigenspace of λ.

Proposition

The algebraic multiplicity of an eigenvalue λ is the same as the dimension of the corresponding generalized eigenspace.

Theorem (Jordan decomposition theorem)

For any operator A there exists a basis such that A is block diagonal with blocks that have eigenvalues on the diagonal and 1s on the upper off-diagonal. In other words, A can be written in the form

$$
A=\left[\begin{array}{cccc}
J_{1} & 0 & \ldots & 0 \\
0 & J_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & J_{k}
\end{array}\right]
$$

where the blocks J_{i} on the main diagonal are Jordan block of the form

$$
[\lambda],\left[\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right],\left[\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right] \text {, etc. }
$$

This form is called Jordan canonical form.

Connection to algebraic and geometric multiplicity:

- The algebraic multiplicity of an eigenvalue λ is the number of times λ appears on the diagonal.
- The geometric multiplicity of λ is the number of Jordan blocks associated with λ.

Why is Jordan form useful?

- every square matrix has JCF
- JCF $=D+N \quad \exists K \geq 1$ st. diagonal nilpotent ${ }^{\downarrow} N^{k}=0$

Singular value decomposition

- $A^{T} A$ is symmetric

$$
A T A=O D O^{-1}=O D O^{\top}
$$

- therefore it is orthogonally diagonalizable and has real eigenvalues
- In fact, the eigenvalues are non-negative (exercise)

Definition

Let A be an $m \times n$ matrix. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of $A^{T} A$. Then the singular values of A are defined as

$$
\sigma_{1}=\sqrt{\lambda_{1}}, \ldots, \sigma_{n}=\sqrt{\lambda_{n}}
$$

Theorem (Singular value decomposition)

If A is an $m \times n$ matrix of rank k, then we can write

$$
A=U \Sigma V^{T}
$$

where Σ is an $m \times n$ matrix of the form

$$
\left[\begin{array}{cc}
D_{k \times k} & 0_{k \times(n-k)} \\
0_{(m-k) \times k} & 0_{(m-k) \times(n-k)}
\end{array}\right],
$$

D is a diagonal matrix with the singular values of $A, \sigma_{1}, \ldots, \sigma_{n}$, on the diagonal and U and V are both orthogonal matrices (of size $m \times n$ and $n \times n$, respectively).

Uses of SVD:

- numerical applications
- U, V are orthogonal so the basis transformation has nice numerical propattes

Differences between JCF and SVD:

- JCF has important theoretic applications
- JCF isnit fully diagonal
- SVD has nice numerical properties

LU-decomposition

Definition

The $L U$-decomposition of a square matrix A is the factorization of A into a lower triangular matrix L and an upper triangular matrix U as follows:

$$
A=L U .
$$

Why is this useful? Consider the linear system $A \mathbf{x}=\mathbf{b}$

$$
\begin{gathered}
\angle U x=b \\
\text { Solve: } L y=b \text { and then } u_{x}=y \\
A x=b, A x=b_{2}, \ldots
\end{gathered}
$$

Recall: orthonormal basis

Definition

Two vectors $\mathbf{x}, \mathbf{y} \in V$ are called orthogonal if $\langle\mathbf{x}, \mathbf{y}\rangle=0$, denoted $\mathbf{x} \perp \mathbf{y}$. We call them orthonormal if additionally the vectors are normalized, i.e. $\|\mathbf{x}\|=\|\mathbf{y}\|=1$. A basis $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ of V is called orthonormal basis (ONB), if the vectors are pairwise orthogonal and normalized.

Starting from a set of linearly independent vectors, we can construct another set of vectors which are orthonormal and span the same space using the Gram-Schmidt Algorithm.

$Q R$-decomposition

Definition ($Q R$-decomposition)

The $Q R$-decomposition of an $m \times n$ matrix A with linearly independent column vectors is the factorization of A as follows:

$$
A=Q R,
$$

where Q is an $m \times n$ matrix with orthonormal column vectors and R is an $n \times n$ invertible upper triangular matrix.

One obtains the factorization by applying the Gram-Schmidt algorithm to the columns of A. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ be the column vectors of A. Let $\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}$ be the orthonormal vectors obtained by applying Gram Schmidt. Then one can write:

$$
\begin{aligned}
\mathbf{u}_{1} & =\left\langle\mathbf{u}_{1}, \mathbf{q}_{1}\right\rangle \mathbf{q}_{1}+\left\langle\mathbf{u}_{2}, \mathbf{q}_{2}\right\rangle \mathbf{q}_{2}+\ldots+\left\langle\mathbf{u}_{n}, \mathbf{q}_{n}\right\rangle \mathbf{q}_{n} \\
\mathbf{u}_{2} & =\left\langle\mathbf{u}_{2}, \mathbf{q}_{2}\right\rangle \mathbf{q}_{2}+\ldots+\left\langle\mathbf{u}_{n}, \mathbf{q}_{n}\right\rangle \mathbf{q}_{n} \\
& \vdots \\
\mathbf{u}_{n} & =\left\langle\mathbf{u}_{n}, \mathbf{q}_{n}\right\rangle \mathbf{q}_{n}
\end{aligned}
$$

Thus the orthonormal vectors obtained using Gram-Schmidt form the columns of Q, while R is the terms needed to go between the columns of A and thsoe of Q, i.e.

$$
R=\left[\begin{array}{cccc}
\left\langle\mathbf{u}_{1}, \mathbf{q}_{1}\right\rangle & \left\langle\mathbf{u}_{2}, \mathbf{q}_{2}\right\rangle & \ldots & \left\langle\mathbf{u}_{n}, \mathbf{q}_{n}\right\rangle \\
0 & \left\langle\mathbf{u}_{2}, \mathbf{q}_{2}\right\rangle & \ldots & \left\langle\mathbf{u}_{n}, \mathbf{q}_{n}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \left\langle\mathbf{u}_{n}, \mathbf{q}_{n}\right\rangle
\end{array}\right]
$$

Why use $Q R$-decomposition?

$$
\begin{aligned}
& A x=b \\
& Q R x=b \\
& \Rightarrow \underbrace{Q y=b}_{\substack{\text { Qadoesit } \\
\text { magnify errors }}} \& \underbrace{R x=y}_{\text {nice to solve }}
\end{aligned}
$$

References

Howard Anton and Chris Rorres. Elementary Linear Algebra. 11th ed. Wiley, 2014
Axler S. Linear Algebra Done Right. 3rd ed. Undergraduate Texts in Mathematics. Springer, 2015. Available from:
https://link.springer.com/book/10.1007/978-3-319-11080-6
Treil S. Linear Algebra Done Wrong. 2017. Available from:
https://www.math.brown.edu/streil/papers/LADW/LADW.html

