Module 9: Linear Algebra III Operational math bootcamp

Emma Kroell

University of Toronto

July 25, 2022

Outline

Spectral theory and matrix decompositions:

- Eigenvalues and eigenvectors
- Algebraic and geometric multiplicity of eigenvalues
- Jordan canonical form
- Singular value decomposition
- LU and QR decompositions

Recall: connection between matrices and linear maps

Multiplication by a matrix defines a linear map

Let $A \in M_{m \times n}$ be a fixed matrix. Then, we can define a linear map $T_A \colon \mathbb{F}^n \to \mathbb{F}^m$ via $T_A(\mathbf{v}) = A\mathbf{v}$, where we recall matrix vector multiplication $(A\mathbf{v})_i = \sum_{k=1}^n A_{ik}v_k$ for i = 1, ..., m.

Given a bases for U and V, $T: U \rightarrow V$ can be written as a matrix

Let $T \in \mathcal{L}(U, V)$ where U and V are vector spaces. Let $\mathbf{u}_1, \ldots, \mathbf{u}_n$ and $\mathbf{v}_1, \ldots, \mathbf{v}_m$ be bases for U and V respectively. The matrix of T with respect to these bases is the $m \times n$ matrix $\mathcal{M}(T)$ with entries A_{ij} , $i = 1, \ldots, m$, $j = 1, \ldots, n$ defined by

$$T\mathbf{u}_k = A_{1k}\mathbf{v}_1 + \cdots + A_{mk}\mathbf{v}_m.$$

Eigenvalues

Definition

Given an operator $A: V \to V$ and $\alpha \in \mathbb{F}$, λ is called an *eigenvalue* of A if there exists a non-zero vector $\mathbf{v} \in V \setminus \{\mathbf{0}\}$ such that

$$A\mathbf{v} = \lambda \mathbf{v}.$$

We call such **v** an *eigenvector* of A with eigenvalue λ . We call the set of all eigenvalues of A spectrum of T and denote it by $\sigma(T)$.

Motivation in terms of linear maps: Let $T: V \to V$ be a linear map, where V is a vector space. We would like to describe the action of this linear map in a particularly "nice" way: such that T acts only by scaling, i.e. $T\mathbf{v}_i = \lambda_i \mathbf{v}_i$ where $\lambda_i \in \mathbb{F}$ for i = 1, ..., n.

Finding eigenvalues

- Rewrite $A\mathbf{v} = \lambda \mathbf{v}$ as $(A \lambda I)_V = O$,
- Thus, if λ is an eigenvalue, we can find the corresponding eigenvectors by finding the null space of $A \lambda I$.
- The subspace null $(A \lambda I)$ is called the *eigenspace*
- To find the eigenvalues of A, one must find the scalars λ such that null $(A \lambda I)$ contains non-trivial vectors (i.e. not **0**)
- Recall: We saw that $T \in \mathcal{L}(U, \mathbf{V})$ is injective if and only if null $T = \{\mathbf{0}\}$.
- Thus λ is an eigenvector if and only if $A \lambda I$ is not invertible.
- Recall: $|A| \neq 0$ if and only if A is invertible.
- Thus λ is an eigenvector if and only if $(A \lambda I) = O$,

Theorem

The following are equivalent

1 $\lambda \in \mathbb{F}$ is an eigenvalue of A,

2
$$(A - \lambda I)\mathbf{v} = 0$$
 has a non-trivial solution

$$|A - \lambda I| = 0$$

Characteristic polynomial

$$|A - \lambda I| = O$$

Definition

If A is an $n \times n$ matrix, $p_A(\lambda) = |A - \lambda I|$ is a polynomial of degree n called the *characteristic polynomial* of A.

To find the eigenvectors of A, one needs to find the roots of the characteristic polynomial.

Example

Find the eigenvalues of

$$h = \begin{bmatrix} 4 & -2 \\ 5 & -3 \end{bmatrix}.$$

$$O = |A - \lambda I|$$

$$= |4 - \lambda - 2|$$

$$= (4 - \lambda)(-3 - \lambda) + 10$$

$$= \lambda^{2} - \lambda - 2$$

$$= (\lambda - \lambda)(\lambda + 1)$$

Multiplicity

 $D(Y) = (Y - 1)_{\sigma}(Y - \sigma)(Y + 3)_{d}$

Definition

The multiplicity of the root λ in the characteristic polynomial is called the *algebraic multiplicity* of the eigenvalue λ . The dimension of the eigenspace $\operatorname{null}(A - \lambda I)$ is called the *geometric multiplicity* of the eigenvalue λ .

Definition (Similar matrices)

Square matrices A and B are called *similar* if there exists an invertible matrix S such that

 $A = SBS^{-1}.$

Similar matrices have the same characteristic polynomials and hence the same eigenvalues (see exercise).

Theorem

Suppose A is a square matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be eigenvectors corresponding to these eigenvalues. Then $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent.

Proof

Proof continued

Inductive hypothesis: Suppose the claim holds for K≥1. Then U, ..., VK corresponding to k, ..., λK (which are distinct) are linearly independent. Suppose λ_{K+1} is an eigenvalue for A with him is corresponding eigenverdd. Let 0 = Z aiv; AdieA Apply (A-XK+, I) $\Rightarrow 0 = \mathcal{Z}_{\alpha_i} (A - \lambda_{k_i} \mathcal{I}) v_i$ atistical Sciences RSITY OF TORONTC

Proof continued

$$= 0 = \sum_{i=1}^{k} \alpha_{i} (Av_{i} - \lambda_{k+1}v_{i}) + \alpha_{k+1} (A - \lambda_{k+1}) v_{k+1}$$

$$= \sum_{i=1}^{k} \alpha_{i} (\lambda_{i} - \lambda_{k+1}) v_{i} + \alpha_{k+1} (\lambda_{k+1} - \lambda_{k+1}) v_{k+1}$$

$$= \sum_{i=1}^{k} \alpha_{i} (\lambda_{i} - \lambda_{k+1}) v_{i}$$

$$= \sum_{i=1}^{k} \alpha_{i} (\lambda_{i} - \lambda_{k+1}) = 0 \quad \forall i \quad \text{since } v_{i}, \dots, v_{k} \text{ are } v_{i}$$

$$= \alpha_{i} (\lambda_{i} - \lambda_{k+1}) = 0 \quad \forall i \quad \text{since } v_{i}, \dots, v_{k} \text{ are } v_{i}$$

$$= \alpha_{i} (\lambda_{i} - \lambda_{k+1}) = 0 \quad \forall i \quad \text{since } v_{i}, \dots, v_{k} \text{ are } v_{i}$$

$$= \alpha_{i} (\lambda_{i} - \lambda_{k+1}) = 0 \quad \forall i \quad \text{since } v_{i}, \dots, v_{k} \text{ are } v_{i}$$

$$= \alpha_{i} (\lambda_{i} - \lambda_{k+1}) = 0 \quad \forall i \quad \text{since } v_{i}, \dots, v_{k} \text{ are } v_{i}$$

$$= \alpha_{i} (\lambda_{i} - \lambda_{k+1}) = 0 \quad \forall i \quad \text{since } v_{i}, \dots, v_{k} \text{ are } v_{i}$$

$$= \alpha_{i} (\lambda_{i} - \lambda_{k+1}) = 0 \quad \forall i \quad \text{since } v_{i}, \dots, v_{k} \text{ are } v_{i}$$

$$= \alpha_{i} (\lambda_{i} - \lambda_{k+1}) = 0 \quad \forall i \quad \text{since } v_{i}, \dots, v_{k} \text{ are } v_{i}$$

$$= \alpha_{i} (\lambda_{i} - \lambda_{k+1}) = 0 \quad \forall i \quad \text{since } v_{i}, \dots, v_{k} \text{ are } v_{i}$$

$$= \alpha_{i} (\lambda_{i} - \lambda_{k+1}) = 0 \quad \forall i \quad \text{since } v_{i}, \dots, v_{k} \text{ are } v_{i}$$

$$= \alpha_{i} (\lambda_{i} - \lambda_{k+1}) = 0 \quad \forall i \quad \text{since } v_{i}, \dots, v_{k} \text{ are } v_{i}$$

$$= \alpha_{i} (\lambda_{i} - \lambda_{k+1}) = 0 \quad \forall i \quad \text{since } v_{i}, \dots, v_{k} \text{ are } v_{i}$$

$$= \alpha_{i} (\lambda_{i} - \lambda_{k+1}) \quad \forall i \quad \text{since } v_{i}, \dots, v_{k} \text{ are } v_{i}$$

$$= \alpha_{i} (\lambda_{i} - \lambda_{k+1}) \quad \forall i \quad \text{since } v_{i}, \dots, v_{k} \text{ are } v_{i}$$

$$= \alpha_{i} (\lambda_{i} - \lambda_{k+1}) \quad \forall i \quad \text{since } v_{i}, \dots, v_{k}$$

$$= \alpha_{i} (\lambda_{i} - \lambda_{k+1}) \quad \forall i \quad \text{since } v_{i}, \dots, v_{k}$$

$$= \alpha_{i} (\lambda_{i} - \lambda_{i} + \lambda_{i}) \quad \forall i \quad \text{since } v_{i}, \dots, v_{k}$$

$$O = \mathcal{A}_{k+1} \vee k+1$$

Corollary

If a $A \in M_n(\mathbb{C})$ has n distinct eigenvalues, then A is diagonalizable. That is there exists an invertible matrix $S \in M_n(\mathbb{C})$ such that $A = SDS^{-1}$, where D is a diagonal matrix with the eigenvalues of A in the diagonal.

A is non matrix

Theorem

Let $A: V' \rightarrow V$ be an operator with n eigenvalues. A is diagonalizable if and only if for each eigenvalue λ , the geometric multiplicity of λ and the algebraic multiplicity of λ are the same.

 $null(A - \lambda I)$

 $\mathbb{D}=\left(\begin{array}{c} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{array}\right)$

Example: a diagonalizable matrix

18 - P

$$\begin{array}{l} A_{\lambda} \\ \begin{bmatrix} 1 & 2 \\ 8 & 1 \end{bmatrix} \text{ is diagonalizable.} \\ \hline \text{Find evigenvalues:} \\ O = |A - \lambda I| = | \begin{bmatrix} 1 - \lambda & \partial \\ 8 & 1 - \lambda \end{bmatrix} = (1 - \lambda)^{2} - 16 \\ = \lambda^{2} - \partial \lambda - 15 \\ = (\lambda - 5)(\lambda + 3) \\ \therefore \lambda = -3, 5 \\ \hline \text{Nex7: find eigenvectors} \end{array}$$

Example continued

 $A+3I = \begin{pmatrix} 4 \\ 8 \\ 4 \end{pmatrix} \wedge \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}\begin{pmatrix} \chi_{1} \\ \chi_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (1,-2) spans null (A+3I) $A-SI = \begin{pmatrix} -4 & 2 \\ 8-4 \end{pmatrix} \longrightarrow \begin{pmatrix} -2 & 1 \\ 0 & 0 \end{pmatrix}$ (1,2) spans null(A-SI)

Example: a matrix that is not diagonalizable

÷

$$\mathcal{B} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \text{ is not diagonalizable.}$$

$$O = |B - XI| = |I - X| = (I - X)^{2}$$

$$\lambda = | \quad \text{multiplicity} \Rightarrow$$

$$B - I = \begin{pmatrix} 0 & 1 \\ 0 & 5 \end{pmatrix} = \text{null}(B - I) \text{ is}$$

Spanned by (0,1)

$$Spanned by (0,1)$$

$$Spanned by (0,1)$$

$$Spanned by (0,1)$$

Theorem

Let $A \in M_n(\mathbb{R})$ be a symmetric matrix. Then, there exists an orthogonal matrix $O \in M_n(\mathbb{R})$ such that $A = ODO^T$, where D is a diagonal matrix with the eigenvalues of A in the diagonal. Furthermore, all eigenvalues of A are real.

We can also state this for $M_n(\mathbb{C})$:

Let $A \in M_n(\mathbb{C})$ be a Hermitian matrix. Then, there exists a unitary matrix $U \in M_n(\mathbb{C})$ such that $A = UDU^*$, where D is a diagonal matrix with the eigenvalues of A in the diagonal. Furthermore, all eigenvalues of A are real.

Block matrices

Definition

A block matrix is a matrix that can be broken into sections called blocks, which are smaller matrices.

Example

$$\begin{array}{c} \begin{bmatrix} 2 & 1 & 0 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

$$A = \begin{pmatrix} 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

Definition

A square matrix is called *block diagonal* if it can be written as a block matrix where the main-diagonal blocks are all square matrices and the off-diagonal blocks are all zero.

Definition

A vector **v** is called a *generalized eigenvector* of A corresponding to an eigenvalue λ if there exists $k \ge 1$ such that

$$(A-\lambda I)^k \mathbf{v} = 0.$$

The set of generalized eigenvectors of an eigenvalue λ (plus **0**) is called the *generalized* eigenspace of λ .

Proposition

The algebraic multiplicity of an eigenvalue λ is the same as the dimension of the corresponding generalized eigenspace.

Theorem (Jordan decomposition theorem)

For any operator A there exists a basis such that A is block diagonal with blocks that have eigenvalues on the diagonal and 1s on the upper off-diagonal. In other words, A can be written in the form

$$A = egin{bmatrix} J_1 & 0 & \dots & 0 \ 0 & J_2 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & J_k \end{bmatrix}$$

where the blocks J_i on the main diagonal are Jordan block of the form

$$\begin{bmatrix} \lambda \end{bmatrix}, \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}, \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}, etc.$$

This form is called Jordan canonical form.

S inverti

Connection to algebraic and geometric multiplicity:

- The algebraic multiplicity of an eigenvalue λ is the number of times λ appears on the diagonal.
- The geometric multiplicity of λ is the number of Jordan blocks associated with λ .

Why is Jordan form useful?

OF TORONTO

Singular value decomposition

• *A^TA* is symmetric

$$A^TA = O D O^{-1} = O D O^T$$

- therefore it is orthogonally diagonalizable and has real eigenvalues
- In fact, the eigenvalues are non-negative (exercise)

Definition

Let A be an $m \times n$ matrix. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of $A^T A$. Then the singular values of A are defined as

$$\sigma_1 = \sqrt{\lambda_1}, \ldots, \sigma_n = \sqrt{\lambda_n}.$$

Theorem (Singular value decomposition)

If A is an $m \times n$ matrix of rank k, then we can write

$$A = U\Sigma V^{T}$$

where Σ is an $m \times n$ matrix of the form

$$\begin{bmatrix} \mathbf{D}_{k\times k} & \mathbf{0}_{k\times (n-k)} \\ \mathbf{0}_{(m-k)\times k} & \mathbf{0}_{(m-k)\times (n-k)} \end{bmatrix},$$

D is a diagonal matrix with the singular values of *A*, $\sigma_1, \ldots, \sigma_n$, on the diagonal and *U* and *V* are both orthogonal matrices (of size $m \times n$ and $n \times n$, respectively).

Uses of SVD:

Differences between JCF and SVD:

LU-decomposition

Definition

The LU-decomposition of a square matrix A is the factorization of A into a lower triangular matrix L and an upper triangular matrix U as follows:

A = LU.

Why is this useful? Consider the linear system $A\mathbf{x} = \mathbf{b}$

LU x = b

Solve:
$$Ly = b$$
 and then $Ux = y$
 $Ax = b$, $Ax = ba$, ...,

Recall: orthonormal basis

Definition

Two vectors $\mathbf{x}, \mathbf{y} \in V$ are called *orthogonal* if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, denoted $\mathbf{x} \perp \mathbf{y}$. We call them *orthonormal* if additionally the vectors are normalized, i.e. $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$. A basis $\mathbf{x}_1, \ldots, \mathbf{x}_n$ of V is called *orthonormal basis (ONB)*, if the vectors are pairwise orthogonal and normalized.

Starting from a set of linearly independent vectors, we can construct another set of vectors which are orthonormal and span the same space using the **Gram-Schmidt Algorithm**.

QR-decomposition

Definition (*QR*-decomposition)

The *QR*-decomposition of an $m \times n$ matrix *A* with linearly independent column vectors is the factorization of *A* as follows:

$$A = QR$$
,

where Q is an $m \times n$ matrix with orthonormal column vectors and R is an $n \times n$ invertible upper triangular matrix.

One obtains the factorization by applying the Gram-Schmidt algorithm to the columns of A. Let $\mathbf{u}_1, \ldots, \mathbf{u}_n$ be the column vectors of A. Let $\mathbf{q}_1, \ldots, \mathbf{q}_n$ be the orthonormal vectors obtained by applying Gram Schmidt. Then one can write:

$$\mathbf{u}_{1} = \langle \mathbf{u}_{1}, \mathbf{q}_{1} \rangle \mathbf{q}_{1} + \langle \mathbf{u}_{2}, \mathbf{q}_{2} \rangle \mathbf{q}_{2} + \ldots + \langle \mathbf{u}_{n}, \mathbf{q}_{n} \rangle \mathbf{q}_{n}$$
$$\mathbf{u}_{2} = \langle \mathbf{u}_{2}, \mathbf{q}_{2} \rangle \mathbf{q}_{2} + \ldots + \langle \mathbf{u}_{n}, \mathbf{q}_{n} \rangle \mathbf{q}_{n}$$
$$\vdots$$
$$\mathbf{u}_{n} = \langle \mathbf{u}_{n}, \mathbf{q}_{n} \rangle \mathbf{q}_{n}$$

Thus the orthonormal vectors obtained using Gram-Schmidt form the columns of Q, while R is the terms needed to go between the columns of A and thsoe of Q, i.e.

$$R = \begin{bmatrix} \langle \mathbf{u}_1, \mathbf{q}_1 \rangle & \langle \mathbf{u}_2, \mathbf{q}_2 \rangle & \dots & \langle \mathbf{u}_n, \mathbf{q}_n \rangle \\ 0 & \langle \mathbf{u}_2, \mathbf{q}_2 \rangle & \dots & \langle \mathbf{u}_n, \mathbf{q}_n \rangle \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \langle \mathbf{u}_n, \mathbf{q}_n \rangle \end{bmatrix}$$

Why use QR-decomposition?

References

Howard Anton and Chris Rorres. Elementary Linear Algebra. 11th ed. Wiley, 2014 🤛

Axler S. *Linear Algebra Done Right*. 3rd ed. Undergraduate Texts in Mathematics. Springer, 2015. Available from: https://link.springer.com/book/10.1007/978-3-319-11080-6

Treil S. *Linear Algebra Done Wrong*. 2017. Available from:

https://www.math.brown.edu/streil/papers/LADW/LADW.html

