Exercises for Module 1: Proofs

1. Prove De Morgan's Laws for propositions: $\neg(P \wedge Q)=\neg P \vee \neg Q$ and $\neg(P \vee Q)=\neg P \wedge \neg Q$ (Hint: use truth tables).

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$\neg(P \wedge Q)$	$\neg P \vee \neg Q$
T	T	F	F	T	F	F
T	F	F	T	F	T	T
F	T	T	F	F	T	T
F	F	T	T	F	T	T

P	Q	$\neg P$	$\neg Q$	$P \vee Q$	$\neg(P \vee Q)$	$\neg P \wedge \neg Q$
T	T	F	F	T	F	F
T	F	F	T	T	F	F
F	T	T	F	T	F	F
F	F	T	T	F	T	T

2. Write the following statements and their negations using logical quantifier notation and then prove or disprove them:
(i) Every odd integer is divisible by three.

$$
\forall x \in \mathbb{Z},(\exists n \in \mathbb{Z} \text { s.t. } x=2 n+1) \Rightarrow(\exists k \in \mathbb{Z} \text { s.t } x=3 k)
$$

negation:

$$
\exists_{\exists x \in Z} \text { st. }(\exists n \in Z \text { st } x=2 n+1) \wedge(\forall k \in \mathbb{Z}, x \neq 3 k)
$$

This statement is false.
Take $x=11$.
(ii) For any real number, twice its square plus twice itself plus six is greater than or equal to five. (You may assume knowledge of calculus.)

$$
\forall x \in \mathbb{R}, 2 x^{2}+2 x+6 \geq 5
$$

Negation: $\exists x \in \mathbb{R}$ s.t $2 x^{2}+2 x+6<5$
This is true. $f(x)=2 x^{2}+2 x+6$ is an upward- facing parabola that attains its minimum at 5.5 .

$$
\min _{x} 2 x^{2}+2 x+6 \Rightarrow 0=4 x+2 \Rightarrow x=-1 / 2 \Rightarrow f(-1 / 2)=\frac{1}{2}-1+6=5.5
$$

(iii) Every integer can be written as a unique difference of two natural numbers.

$$
\begin{aligned}
& \forall z \in \mathbb{Z} \text { !n, } n_{1}, n_{2} \text { sit. } z=n_{1}-n_{2} \\
& \exists z \in \mathbb{Z} \text { s.t. }\left(\exists n_{1}, n_{2}, n_{3}, n_{4} \text { st. } n_{1} \neq n_{3}, n_{2} \neq n_{4}, z=n_{1}-n_{2}=n_{3}-n_{4}\right) v \\
& \left(\forall n_{1}, n_{2} \in \mathbb{N}, z \neq n_{1}-n_{2}\right)
\end{aligned}
$$

This is false. ex. I can be written as the difference of natural numbers in infinite ways, $e x . \quad 1=3-2=4-3$
3. Prove the following statements:
(i) If $a \mid b$ and $a, b \in \mathbb{N}$ (positive integers), then $a \leq b$.

Suppose alb $\& a, b \in \mathbb{N}$.
Then $\exists j \in \mathbb{N}$ s.t. $b=a j .(j>0$ since $a, b>0)$
Since $j \geq 1, b \geq a$.
(could also use contradiction)

Let $a, b, c, x, y \in \mathbb{Z}$.
Let $a \mid b$ and $a \mid c$. By definition, this means that $\exists_{j}, k \in E$ st. $b=a j$ \& $c=a k$.

Then

$$
\begin{aligned}
x b+y c & =x a j+y a k \\
& =a(\underbrace{j+y k)}_{\in z}
\end{aligned}
$$

Thus $a \mid(x b+y c)$ by definition. 图
(iii) Let $a, b, n \in \mathbb{Z}$. If n does not divide the product $a b$, then n does not divide a and n does not divide b.

We prove the contrapositive, i.e.

$$
n|a \cup n| b \Rightarrow n \mid a b \text {. }
$$

Let $a_{a} b_{j} n \in \mathbb{Z}$.
Suppose $n \mid a$. Then $\exists_{j} \in \mathbb{Z}$ s.t $a=n j$

$$
\therefore n \mid a b .
$$

$$
\Rightarrow a b=n j b=n(\underset{\in Z}{j b})
$$

Suppose $n \mid b$. The proof that $n l a b$ is the sane, with the roles
4. Prove that for all integers $n \geq 1,3\left(2^{2 n}-1\right)$. of $a \& b$ interchanged.
We proceed by induction on n.
Base case: $n=1$. Then $2^{2 n}-1=4-1=3$, which is divisible by 3 .
Inductive hypothesis: Suppose $3 / 2^{2 k}-1$ for some $k \in \mathbb{N}$.
We show $3 / 2^{2(k+1)}-1$.
$3 \mid 2^{2 k}-1$ means $\exists j \in Z$ s.t $2^{2 k}-1=3 j$.
We see that $2^{2(k+1)}-1=2^{2} 2^{2 k}-1$

$$
\begin{aligned}
& =4\left(2^{k}\right)-4+3 \\
& =4\left(2^{k}-1\right)+3 \\
& =4(3 j)+3 \\
& =3(4 j+1)
\end{aligned}
$$

Thus $312^{2(k+1)}-1$. The claim holds by induction.

We have already shown (in lecture) that each integer $n \geq 2$ has a pdime factorization. It remains to show that this factorization is unique.
Suppose in order to derive a contradiction that the prime factorization is not unique. Then there exists a least integer
$n \geq 2$ such that

$$
\begin{array}{r}
n=p_{1} p_{2} \cdots p_{k}=q_{1} q_{2} \cdots q_{l} \quad \text { where } p_{i}, q_{j}, 1 \leq i \leqslant k, 1 \\
1 \leqslant j \leqslant l \\
\text { are prime numbers }
\end{array}
$$

This equality gives us that the pi divide $q_{1} q_{2} \cdots$ ge Without loss of generality, we focus on p_{1}.
$p_{1} \mid q_{1} q_{2} \cdots q_{l}$ implies that p_{1} divides one of $\left.q_{1}, q_{2}, \ldots, q_{l}\right)$ since they are prime.
Without loss of generality, $p_{1} l q_{1}$. Since both are prime, this means $p_{1}=q_{1}$.
Thus $p_{1} p_{2} \cdots p_{k}=q_{1} q_{2} \cdots q_{e} \Rightarrow p_{2} \cdots p_{k}=q_{2} \cdots q_{e}$
This contradicts our assumption that n was the least integer that could be written as the product of two sets of primes.
Therefore there does not exist such a $n \Rightarrow$ prime factorizedions are unique.

