Module 1: Proofs

Operational math bootcamp

Statistical Sciences

UNIVERSITY OF TORONTO

Emma Kroell
University of Toronto
July 10, 2023

Outline

- Logic
- Review of Proof Techniques
- Heroduction Se Theory

Propositional logic

Propositions are statements that could be true or false. They have a corresponding truth value.
ex. " n is odd" and " n is divisible by 2 " are propositions. Let's call them P and Q. Whether they are true or not depends on what n is.

We can negate statements: $\neg P$ is the statement " n is not odd"
$\neg Q: n$ is not divisible by 2
We can combine statements:
and $P \wedge Q$ is the statement:

- $P \vee Q$ is the statement: We always assume the inclusive or unless specifically stated otherwise.

Examples

Symbol	Meaning
capital letters	propositions
\Longrightarrow	implies
\wedge	and
\vee	inclusive or
\neg	not

- If it's not raining, I won't bring my umbrella.
- I'm a banana or Toronto is in Canada.
- If I pass this exam, Ill be both happy and surprised

Truth values

Example

If it is snowing, then it is cold out.
It is snowing.
Therefore, it is cold out.

Write this using propositional logic:

$$
P: \text { it is snowing, } Q: \text { it is cold out }
$$

How do we know if this statement is true or not?

Truth table

$$
P \Longrightarrow Q
$$

If it is snowing, then it is cold out.

When is this true or false?

P	Q	$P \Longrightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

Logical equivalence

$$
P \Longrightarrow Q \text { implies } \text { or If } P \text {, then } Q
$$

$\neg P \vee Q$

P	Q	$P \underset{\|c\|}{\Longrightarrow} Q$	
T	T		
T	F		F
F	T		T
T	F		
T	T		

P	Q	$\neg P$	$\neg P \vee Q$
T	T	F	T
T	F	F	F
F	T	T	T
F	F	T	T

$$
\begin{array}{ll}
\text { What is } \neg(P \Longrightarrow Q) \text { ? } & \neg(P \wedge Q)=(\neg P) \vee(\neg Q) \\
\neg(\neg P \vee Q) & \neg(P \vee Q)=(\neg P) \neg(\neg Q) \\
=P \wedge \neg Q &
\end{array}
$$

Quantifiers

For all

"for all", \forall, is also called the universal quantifier.
If $P(x)$ is some property that applies to x from some domain, then $\forall x P(x)$ means that the property P holds for every x in the domain.
"Every real number has a non-negative square." We write this as
$\forall x \in \mathbb{R}, \quad x^{2} \geq 0$
How do we prove a for all statement?

$$
\begin{aligned}
& \text { Take } x \text { in the domain arbitrary, show } \\
& P(x) \text { is true. }
\end{aligned}
$$

Quantifiers
There exists
"there exists", \exists, is also called the existential quantifier.
If $P(x)$ is some property that applies to x from some domain, then $\exists x P(x)$ means that the property P holds for some x in the domain.

4 has a square root in the reals. We write this as

$$
\exists x \in \mathbb{R}, x^{2}=4
$$

How do we prove a there exists statement?
Find x is domain such that $P(x)$ is true.
There is also a special way of writing when there exists a unique element: \exists !.
For example, we write the statement "there exists a unique positive integer square root of 64 " as

$$
\exists!x \in \mathbb{Z}_{+}, x^{2}=64
$$

Combining quantifiers

Often we will need to prove statements where we combine quantifiers.
Here are some examples:

Statement	Logical expression
Every non-zero rational number has a multiplicative inverse	$\forall g \in \mathbb{T} \backslash\{0\} \quad \exists s \in \mathbb{Q}$ st.
$q s=1$	

Each integer has a unique additive inverse

$$
\begin{gathered}
\forall x \in z \quad \exists \prime y \in z \text { s.t. } \\
x+y=0
\end{gathered}
$$

f $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x_{0} \in \mathbb{R}$

$$
\begin{aligned}
& \forall q \in \mathbb{Q} \backslash\{0\} \exists s \in \mathbb{Q} \text { st. } \\
& q s=1
\end{aligned}
$$

$$
\forall \varepsilon>0 \quad \exists \delta>0 \text { s.t. }\left|x-x_{0}\right|<\delta \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon
$$

Quantifier order \& negation

The order of quantifiers is important! Changing the order changes the meaning. Consider the following example. Which are true? Which are false?

$$
\begin{array}{rl}
(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})(x+y=2) & F \\
\hdashline \forall x \in \mathbb{R} \exists y \in \mathbb{R} x+y=2 & T \\
\exists \exists x \in \mathbb{R} \forall y \in \mathbb{R} x+y=2 & F \\
\exists x \in \mathbb{R} \exists y \in \mathbb{R} x+y=2 & T
\end{array}
$$

Negating quantifiers:

$$
\begin{aligned}
\neg \forall x P(x) & =\exists x(\neg P(x)) \\
\neg \exists x P(x) & =\forall x(\neg P(x))
\end{aligned}
$$

The negations of the statements above are:
(Note that we use De Morgan's laws, which are in your exercises:

$$
\neg(P \wedge Q)=\neg P \vee \neg Q \text { and } \neg(P \vee Q)=\neg P \wedge \neg Q .)
$$

$$
\begin{array}{ll}
\text { Logical expression } & \text { Negation } \\
\hline \forall q \in \mathbb{Q} \backslash\{0\}, \exists s \in \mathbb{Q} \text { such that } q s=1 & \exists q \in \mathbb{Q} \backslash\{0\} \quad \forall s \in \mathbb{Q} \quad q S \neq \backslash
\end{array}
$$

$\forall x \in \mathbb{Z}, \exists!y \in \mathbb{Z}$ such that $x+y=0 \quad \exists x \in \mathbb{Z}$ such that $(\forall y \in \mathbb{Z}, x+y \neq 0)$

$$
V\left(\exists y_{1}, y_{2} \in \pi, \quad y_{1} \neq y_{2}, x+y_{1}=0\right)
$$

$\forall \epsilon>0 \exists \delta>0$ such that whenever $\mid x-$

$$
\left.\left.\begin{array}{rl}
x_{0}\left|<\delta,\left|f(x)-f\left(x_{0}\right)\right|<\epsilon\right. \\
\forall \varepsilon>0) \mid \lambda \delta>0) & \exists\left(x-x_{0} \mid<\delta\right) \Rightarrow
\end{array}\left|f(x) \cdot f\left(x_{0}\right)\right|<\varepsilon\right)\right)
$$

What do these mean in English? $\left.\left|f(x) \cdot f\left(x_{0}\right)\right|<\varepsilon\right) \wedge\left(\left|f(x)-f\left(x_{0}\right)\right| \geqslant \varepsilon\right)$

Types of proof

- Direct
- Contradiction
- Contrapositive
- Induction

Direct Proof

Approach: Use the definition and known results.

Example

Claim

The product of an even number with another integer is even.

Approach: use the definition of even.

Direct Proof

Claim
The product of an even number with another integer is even.
Definition
We say that an integer n is even if there exists another integer j such that $n=2 j$.
We say that an integer n is odd if there exists another integer j such that $n=2 j+1$.
Proof. Let $n, m \in \mathbb{Z}$. Assume n is even, i.e., $\exists j \in \mathbb{Z}$ s.t.
$n=2 j$. (by definition).
Then $n m=2 j m=2 \times(j m)$. Since $j m \in Z$, mn is even by definition.

Definition
Let $a, b \in \mathbb{Z}$. We say that "a divides b ", written $a \mid b$, if the remainder is zero when b is divided by a, ie. $\exists j \in \mathbb{Z}$ such that $b=a j$.

Example
Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$. Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.
Proof. Let $a_{1} b, c \in z, a \neq 0$.
$a \mid b \Rightarrow \exists j \in \mathbb{Z}$ s.t. $b=a j$
$b \mid c \Rightarrow \exists K \in B$ sit. $c=b K$
Then $c=b k=a j k$. Since $j k \in \mathbb{Z}$, $a l c$ by
definition.

Claim
If an integer squared is even, then the integer is itself even.

How would you approach this proof?

$$
x^{2}=2 n \quad x=\sqrt{2 n}=\ldots
$$

Proof by contrapositive

$$
P \Longrightarrow Q
$$

$$
\neg Q \Longrightarrow \neg P
$$

P	Q	$P \Longrightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

P	Q	$\neg P$	$\neg Q$	$\neg Q \Longrightarrow \neg P$
T	T	F	F	T
T	F	F	T	F
F	T	T	F	T
F	F	T	T	T

Proof by contrapositive

Claim
If an integer squared is even, then the integer is itself even.
Proof.
P

$$
\neg Q \Rightarrow \imath P
$$

Integer is odd \Rightarrow integer squared is odd
We prove the contrapositive. Let $n \in \mathbb{R}$ sit. $\exists K \in \mathbb{R}$ sit. $n=2 k+1$.
Then $\left.n^{2}=2 k+1\right)^{2}=4 k^{2}+4 k+1=2\left(\frac{\left.2 k^{2}+2 k\right)}{67}+1\right.$

Proof by contradiction
Assume the statements aren't true and derive a contradiction.
Claim
The sum of a rational number and an irrational number is irrational.
Proof.
Let $q \in \mathbb{Q}$ and $r \in \mathbb{R} \backslash \mathbb{Q}$. Suppose in order to derive a contradiction that

$$
q+r=s \text { where } s \in \mathbb{Q}
$$

Then $r=s-q$. But $s-q \in \mathbb{Q}$. This is a contradiction. Therefore $q+r$ must be irrational.
部

Summary

In sum, to prove $P \Longrightarrow Q$:
Direct proof: assume P, prove Q
Proof by contrapositive: assume $\neg Q$, prove $\neg P$
Proof by contradiction: assume $P \wedge \neg Q$ and derive something that is impossible

Induction

Well-ordering principle for \mathbb{N}

Every nonempty set of natural numbers has a least element.

Principle of mathematical induction

Let n_{0} be a non-negative integer. Suppose P is a property such that
(1) (base case) $P\left(n_{0}\right)$ is true
(2) (induction step) For every integer $k \geq n_{0}$, if $P(k)$ is true, then $P(k+1)$ is true.

Then $P(n)$ is true for every integer $n \geq n_{0}$
Note: Principle of strong mathematical induction: For every integer $k \geq n_{0}$, if $P(n)$ is true for every $n=n_{0}, \ldots, k$, then $P(k+1)$ is true.

Proof. We prove the claim by induction.
Base case: $n=4 \quad 4!=4 \times 3 \times 2 \times 1=24$

$$
2^{4}=16
$$

Since $4!>2^{4}$, the base case holds.
Inductive
hypothesis: Suppose for some $k \geqslant 4, k!>2^{k}$.
Then $2^{k+1}=2 \times 2^{k}<2 \times k!<(k+1) \times k!=(k+1)!$.
Therefore the
 by induction.

Every integer $n \geq 2$ can be written as the product of primes.
Proof. We prove this by strong induction on n.
Base case: $n=2.2$ is prime, so the statement holds.
Inductive hypothesis: Suppose for $k \geq 2$, we can write any $n \in[2, k]$ as the product of primes, i.e., $\exists p_{1}, \ldots, p_{m}$ prime such that $n=p_{1} \cdots p_{m}$. Inductive step:

We want to show that $k+1$ can be written as the product of primes
If $k+1$ is prime, then we are dove.
If $k+1$ is not prime, $k+1=a b$ where $1<a, b<k+1$.
Then by the indudire hypothesis, the conclusion, ,bold $s_{4 / 25}$

References

Gerstein, Larry J. (2012). Introduction to Mathematical Structures and Proofs.
Undergraduate Texts in Mathematics. url: https://link.springer.com/book/10.1007/978-1-4614-4265-3

Lakins, Tamara J. (2016). The Tools of Mathematical Reasoning. Pure and Applied Undergraduate Texts.

