$$
f(x)= \begin{cases}e^{-\frac{1}{x}} & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

is smooth.
Clearly f is smooth at all $x \neq 0$. Thus, we only need to look at the behaviour of f at 0 . Since $f^{(k)}(x)=0 \quad \forall x \in(-\infty, 0], \forall k \geq 0$, we need to show that $\lim _{h \downarrow 0} \frac{f^{(k)}(h)-f^{(k)}(0)}{n}=\lim _{h \rightarrow 0} \frac{f^{k}(h)}{n}=0 \quad \forall k \geq 0$.
This is true for $k=0$ since $\lim _{n \rightarrow 0} \frac{e^{-1 / h}}{n}=\lim _{h \rightarrow 0} \frac{\left(\frac{1}{n}\right)}{e^{1 / n}}=\lim _{h \rightarrow 0} \frac{\left(-\frac{1}{n}\right)^{n}}{\frac{n}{n_{2}} e^{1 / n}}=\lim _{h \rightarrow 0} e^{-1 / h}=0$.
First we prove the following using induction: $f^{(k)}(x)=p_{2 k}\left(x^{-1}\right) x^{-1 / x}$ where $p_{2 k}$ is a polynomial of degree 210 case: $f^{\prime}(x)=\frac{1}{x^{2}} e^{-1 / x}=\left(x^{-1}\right)^{2} e^{-1 / x}$ as required
Inductive hypothesis: $f^{(m)}(x)=\operatorname{pam}\left(x^{-1}\right) e^{-4 x}$ for some $m \geq 1$.
Then $f(m+1)(x)=\left(p_{a m}\left(x^{-1}\right)\right)^{1} e^{-1 / x}+\frac{1}{x^{2}} p_{2 m}\left(x^{-1}\right) e^{-1 / x}$

$$
=p_{2 m+1}\left(x^{-1}\right) e^{-1 / x}+p_{2 m+2}\left(x^{-1}\right) e^{-4 / x}=p_{2(m+1)}\left(x^{-1}\right) e^{-4 x} \text {. }
$$

Thus $f^{(k)}(x)=p_{2 k}\left(x^{-1}\right) e^{-4 x} \quad \forall k \geq 1$.

2. Let $f \in \mathcal{R}([a, b])$ and suppose $|f| \leq M$ for some $M>0$. Show that $\left|\int_{a}^{b} f(x) d x\right| \leq M(b-a)$.

Proof. By definition, $-|f(x)| \leq f(x) \leq|f(x)| \quad \forall x \in[a, b]$.
By monotonicity, $-\int_{a}^{b}|f(x)| d x \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b}|f(x)| d x$

$$
\begin{aligned}
\Rightarrow\left|\int_{a}^{b} f(x) d x\right| & \leq \int_{a}^{b}|f(x)| d x \forall x \in[a, b] \text { by dot of } \\
& \leq \int_{a}^{b} M d x \text { by monotoncity } \\
& =M(b-a) \text { by integral of a constail }
\end{aligned}
$$

Note that in this proof we have shown that for $f \in \mathbb{R}([a, b)$,

$$
\left|\int_{a}^{b} f(x) d x\right| \leqslant \int_{a}^{b}|f(x)| 1 d x
$$

$$
(f g)^{(r)}(x)=\sum_{k=0}^{r}\binom{r}{k} f^{(k)}(x) g^{(r-k)}(x)
$$

You can use properties of the binomial coefficient.
We prove this by induction on r.
Base case $r=1$

$$
\begin{aligned}
(f g)^{(1)}(x)=(f g)^{\prime}(x) & =f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \text { by regular product } \\
& =\sum_{k=0}^{1}\binom{1}{k} f^{(k)}(x) g^{(1-k)}(x)
\end{aligned}
$$

Inductive hypothesis: suppose for some $n \geqslant 1$,

$$
(f g)^{(n)}(x)=\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(x) g^{(n-k)}(x)
$$

We show the statement holds for $n+1$:

$$
\begin{aligned}
&(f g)^{(n+1)}(x)=\frac{d}{d x}\left((f g)^{(n)}(x)=\right. \frac{d}{d x} \sum_{k=0}^{n}\binom{n}{k} f^{(k)}(x) g^{(n-k)}(x) \quad \text { by inductive hyp pot o thesis } \\
&= \sum_{k=0}^{n}\binom{n}{k}\left[\left(f^{(k)}\right)^{\prime}(x) g^{(n-k)}(x)+f^{(k)}(x)\left(g^{(n-k)}\right)^{\prime}(x)\right] \quad \text { by product } \\
& \text { rule } \\
&= \sum_{k=0}^{n}\binom{n}{k} f^{(k+1)}(x) g^{(n-k)}(x)+\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(x) g^{(n-k+1)}(x) \\
&= \sum_{k=1}^{n=1}\binom{n}{k=1} f^{(k)}(x) g^{(n-k+1)}(x)+\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(x) g^{(n-k+1)}(x) \\
&=\binom{n}{n} f^{(n+1)}(x) g(x)+\sum_{k=1}^{n}\left[\binom{n}{k-1}+\binom{n}{k}\right] f^{(k)}(x) g^{(n-k+1)}(x) \\
&+\binom{n}{0} f(x) g^{(n+1)}(x)
\end{aligned}
$$

Note that $\binom{n}{k-1}+\binom{n}{k}$

$$
\begin{aligned}
& =\frac{n!}{(k-1)!(k-k)!+!}+\frac{n!}{k!(n-k)!}=f^{(n+1)}(x) g(x)+\sum_{k=1}^{n}\binom{n+1}{k} f^{(k)}(x) g^{(n+1-k)}(x) \\
& =\frac{n!\cdot k+n!\cdot(n-k+1)}{k!(n-k+1)!}+f(x) g^{(n+1)}(x) \rightarrow 0^{\text {an term }} \\
& \begin{array}{l}
=\frac{n!(n+1)}{k!(n+1-k)!}=\sum_{k=0}^{n+1}\binom{n+1}{k} f^{(k)}(x) g^{(n+1-k)}(x) \text { as required. } \\
=\binom{n+1}{k}
\end{array}
\end{aligned}
$$

4. (Challenge Problem) Consider the space of continuous functions on the unit interval, $C([0,1])$. Prove that there exists a unique $f \in C([0,1])$ such that for all $x \in[0,1]$

$$
f(x)=x+\int_{0}^{x} s f(s) \mathrm{d} s
$$

Hint: You can use that $C([0,1])$ is a complete metric space with respect to the supremums metric $d_{\infty}(f, g)=$ $\sup _{x \in[0,1]}|f(x)-g(x)|$ for $f, g \in C([0,1])$.

We use the Banach fixed point theorem. We need to show that the map $G: C([0,1]) \rightarrow C([0,1])$ defined by
$G(f)(x)=f(x)+\int_{0}^{x} s f(s) d s$ is a contraction.
Note that G is a continuous function on $[0,1]$.
Using the sup norm, we need to show that $d_{\infty}\left(G\left(f_{1}\right), G\left(f_{2}\right)\right) \leq k d_{\infty}\left(f_{1}, f_{2}\right)$ for some $k<1$.
Let $f_{1}, f_{2} \in C([0,1])$. Then

$$
\begin{aligned}
d_{\infty}\left(G\left(f_{1}\right), G\left(f_{2}\right)\right] & =\sup _{x \in[0,1]}\left|G\left(f_{1}\right)(x)-G\left(f_{2}\right)(x)\right| \\
& =\sup _{x \in[0,1]}\left|x+\int_{0}^{x} s f_{1}(s) d s-x-\int_{0}^{x} s f_{2}(s) d s\right| \\
& =\sup _{x \in[0,1]}\left|\int_{0}^{x} s\left(f_{1}(s)-f_{2}(s)\right) d s\right| \\
& \leq \sup _{x \in[0,1]} \int_{0}^{x}\left|s\left(f_{1}(s)-f_{2}(s)\right)\right| d s \quad \text { by }(*) \text { from exercise } 2 \\
& =\sup _{x \in[0,1]} \int_{0}^{x} s\left|f_{1}(s)-f_{2}(s)\right| d s \\
& \leq \sup _{x \in[0,1]} \int_{0}^{x} s d_{\infty}\left(f_{1}, f_{2}\right) d s \quad \text { since }\left|f_{1}(s)-f_{2}(s)\right| \leq \sup _{s \in[0,1]}\left|f_{1}(s)-f_{2}(s)\right| \\
& =\sup _{x \in[0,1]} d_{\infty}\left(f_{1}, f_{2}\right) \int_{0}^{x} s d s \quad \text { by linearity of integral } \\
& =\sup _{x \in[0,1]} d_{\infty}\left(f_{1}, f_{0}\right) \frac{x^{2}}{2} \\
& =\frac{1}{2} d_{\infty}\left(f_{1}, f_{2}\right) \therefore G \text { is a contraction }
\end{aligned}
$$

Since $G: C([0,1]) \rightarrow C([0,1])$ is a contraction and $C([0,1])$ is a complete metric space, such a unique f must exist by the Banach fixed pt Theorem.

