Exercises for Module 2: Set Theory

1 Let $A = \{x \in \mathbb{R} : x < 100\}$, $B = \{x \in \mathbb{Z} : |x| \ge 20\}$, and $C = \{y \in \mathbb{N} : y \text{ is prime}\}$ $(A, B, C \subseteq \mathbb{R})$. Find $A \cap B$, $B^c \cap C$, $B \cup C$, and $(A \cup B)^c$.

$$A \cap B = \{ x \in \mathbb{Z} : (x \in -a0) \land (a0 \leq x < 100) \}$$

$$B^{c} = (-a0, a0) \cup \{ x \in \mathbb{R} \setminus \mathbb{Z} : |x| \geq a0 \}$$

$$B^{c} \land C = \{ y \in \mathbb{N} : y \text{ is prime and } y < a0 \}$$

$$B \cup C = \{ x \in \mathbb{Z} : |x| \geq a0 \} \cup \{ y \in \mathbb{N} : y \text{ is prime and } y < a0 \}$$

$$A \cup B = \{ x \in \mathbb{R} : (x < 100) \lor (x \in \mathbb{Z} \land x \geq 100) \}$$

$$(A \cup B)^{c} = \{ x \in \mathbb{R} \setminus \mathbb{Z} : x \geq 100 \}$$

2. Is $\mathbb{R} \times \mathbb{R}$ with the ordering $(x_1, y_1) \preceq (x_2, y_2)$ if $x_1 \leq x_2$ a partially ordered set?

No. Take
$$(x, y_i) = (a_i, i)$$
 and $(x_{a_i}y_{a_i}) = (a_i, 8)$.
Then we have $(a_i, i) \leq (a_i, 8)$ and $(a_i, 8) \leq (a_i, i)$
but $(a_i, i) \neq (a_i, 8)$.
The ordering is not arti-symmetric => not
a partial order.

- 3. Let S be a non-empty set. A relation R on S is called an equivalence relation if it is
 - (i) Reflexive: $(x, x) \in R$ for all $x \in S$
 - (ii) Symmetric: if $(x, y) \in R$ then $(y, x) \in R$ for all $x, y \in S$
- (iii) Transitive: if $(x, y), (y, z) \in R$ then $(x, z) \in R$ for all $x, y, z \in S$

Given $x \in S$, the equivalence class of x (with respect to a given equivalence relation R) is defined to consist of those $y \in S$ for which $(x, y) \in R$. Show that two equivalence classes are either disjoint or identical.

Let
$$x_{i}, x_{2} \in S$$
 such that $x_{i} \neq x_{2}$. Let E_{i} be the equivalence class
of x_{i} and E_{2} be the equivalence class of x_{2} .
Note that any two sets are either disjoint or not disjoint. If $E_{i} \notin E_{2}$
are disjoint, the are done. So we assume E_{i} and E_{2} are not disjoint,
with the goal of showing that they are identical.
Since we assumed E_{i}, E_{2} are not disjoint, $\exists y_{0}eS$ such that $y_{0}eE_{1}$
and $y_{0}eE_{2}$, i.e., $(x_{i},y)eR$ and $(x_{2},y)eR$.
Let $z \in E_{i} (=) (x_{i},z)eR$ by definition.
 $(=) (y_{1}z)eR$ by symmetry & transitivity $((x_{i},y)eR)$
 $(=) (x_{0},z)eR$ by symmetry & transitivity $((x_{0},y)eR)$
 $(=) (x_{0},z)eR$ by symmetry & transitivity $((x_{0},y)eR)$
 $(=) (z_{0},z)eR$ by symmetry & transitivity $((x_{0},y)eR)$
 $(=) (z_{0},z)eR$ by symmetry & transitivity $((x_{0},y)eR)$
 $(=) z_{0}eE_{2}$.

4. Let (X, \leq) be a partially ordered set and $S \subseteq X$ be bounded. Show that the infimum and supremum of S are unique (if they exist).

Proof that the supremum is unique (infimum is similar):
Let
$$(X, \leq)$$
 be a partially ordered set and $S \leq X$ bounded.
Suppose in order to define a contradiction that S has
two suprema: r , and r_0 .
By the definition of supremum, since r , is the sup and
 r_0 is another upper bound, $r_1 \leq r_0$.
Similarly, since r_0 is the sup and r , is an upper bound,
 $r_0 \leq r_1$.
By anti-symmetry of the partial order \leq , $r_1 = r_0$.
Thus if a partially ordered set has a supremum, it
must be unique.

5. Let
$$S,T \subseteq \mathbb{R}$$
 and suppose both are bounded above. Define $S+T = \{s+t: s \in S, t \in T\}$. Show that
 $S+T$ is bounded above and $\sup(S+T) = \sup S + \sup T$.
Proof. Since both $S \notin T$ are bounded above, they both have a supremum
Let $\mathcal{X} = \sup S$ and $y = \sup T$. By definition, $S \subseteq \mathcal{X}$ $\forall S \in S$ and
 $t \in Y$ $\forall t \in T$. Therefore $S + t \in \mathcal{X} + \mathcal{Y}$ $\forall S \in S$, $\forall t \in T$, $S \circ S + t$ is
an upper bound for $S + T$ (i.e., $S + T$ is bounded above).
Claim: $\sup(S+T) = \mathcal{X} + \mathcal{Y}$. We use the characterization of sup from
Prop 2.22. We have already shown that $S + t$ is an upper bound for
 $S + T$, so it remains to show that $\forall E > O = T \in (S + T)$ such that
 $\mathcal{X} + \mathcal{Y} - \mathcal{E} \leq S + t$.
Let $\mathcal{E} > O$ be arbitrary.
Since $\mathcal{X} = \sup S$, $\exists S \in S$ such that $\mathcal{X} - \mathcal{E}/2 \leq S$.
Since $\mathcal{Y} = \sup S$, $\exists S \in S$ such that $\mathcal{Y} - \mathcal{E}/3 - t$.
Thus $\exists S \in S, \exists t \in T$ such that $\mathcal{X} + \mathcal{Y} - \mathcal{E} \leq S + t$. . . $\sup(S + T) = \sup(S) + \sup(T)$

6. Let $f: X \to Y, X, Y \subseteq \mathbb{R}$, be defined by the map $x \mapsto \sin(x)$. For what choices of X and Y is f injective, surjective, bijective, or neither?

Solution is not unique. Here is one solution.
injective:
$$X = \begin{bmatrix} -II, II \end{bmatrix}$$
, $Y = IR$
surjective: $X = IR$, $Y = \begin{bmatrix} -1, I \end{bmatrix}$
bijective: $X = \begin{bmatrix} III, II \end{bmatrix}$, $Y = \begin{bmatrix} -1, I \end{bmatrix}$
neither: $X = IR$, $Y = IR$