Module 2: Set Theory Operational math bootcamp

Emma Kroell

University of Toronto

July 12, 2023

Outline

- Review of basic set theory
- Ordered Sets
- Functions

Introduction to Set Theory

- We define a *set* to be a collection of mathematical objects.
- If S is a set and x is one of the objects in the set, we say x is an element of S and denote it by x ∈ S.
- The set of no elements is called empty set and is denoted by \emptyset .

(ST)

Definition (Subsets, Union, Intersection)

Let S, T be sets.

- We say that S is a subset of T, denoted $S \subseteq T$, if $s \in S$ implies $s \in T$.
- We say that S = T if $S \subseteq T$ and $T \subseteq S$.
- We define the *union* of S and T, denoted $S \cup T$, as all the elements that are in *either* S or T.
- We define the *intersection* of S and T, denoted $S \cap T$, as all the elements that are in *both* S and T.
- We say that S and T are *disjoint* if $S \cap T = \emptyset$.

Some examples

Example

$$\mathbb{N}\subseteq\mathbb{N}_0\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}$$

Example

Let $a, b \in \mathbb{R}$ such that a < b. Open interval: $(a, b) := \{x \in \mathbb{R} : a < x < b\}$ $(a, b \text{ may be } -\infty \text{ or } +\infty)$ Closed interval: $[a, b] := \{x \in \mathbb{R} : a \le x \le b\}$ We can also define half-open intervals.

Let $A = \{x \in \mathbb{N} : 3 | x\}$ and $B = \{x \in \mathbb{N} : 6 | x\}$. Show that $B \subseteq A$.

Proof. Let XEB. Then Glx, so by definition EKEZ such that X=6K. Then X=3x2K so 31x by definition. Thus XEA.

Difference of sets

Definition

Let $A, B \subseteq X$. We define the *set-theoretic difference* of A and B, denoted $A \setminus B$ (sometimes A - B) as the elements of X that are in A but *not* in B. The complement of a set $A \subseteq X$ is the set $A^c := X \setminus A$.

Example

Let
$$X \subseteq \mathbb{R}$$
 be defined as $X = \{x \in \mathbb{R} : 0 < x \le 40\} = (0, 40]$. Then
 $X^{c} = \{x \in \mathbb{R} : x \le 0 \text{ or } x > 40\} = (-\infty, \overline{0}] \cup (40, \infty)$

Recall that for sets S, T:

- the union of S and T, denoted $S \cup T$, is all the elements that are in either S and T
- and the *intersection* of S and T, denoted S ∩ T, is all the elements that are in both S and T.

We extend the definition of union and intersection to an arbitrary family of sets as follows:

Definition

Let S_{α} , $\alpha \in A$, be a family of sets. A is called the *index set*. We define

$$igcup_{lpha\in {\mathcal A}} S_lpha := \{x: \exists lpha ext{ such that } x\in {\mathcal S}_lpha\},$$

$$igcap_{lpha\in {\mathcal A}} S_lpha := \{x: x\in S_lpha ext{ for all } lpha\in {\mathcal A}\}.$$

$$\bigcup_{n=1}^{\infty} [-n, n] = \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right) = \frac{1}{20}$$

Theorem (De Morgan's Laws)

Let $\{S_{\alpha}\}_{\alpha\in A}$ be an arbitrary collection of sets. Then

$$\left(\bigcup_{\alpha \in A} S_{\alpha}\right)^{c} = \bigcap_{\alpha \in A} S_{\alpha}^{c} \text{ and } \left(\bigcap_{\alpha \in A} S_{\alpha}\right)^{c} = \bigcup_{\alpha \in A} S_{\alpha}^{c}$$
Proof.
Let $X \in \left(\bigcup_{\alpha \in A} S_{\alpha}\right)^{c}$. This is true if and only if
 $X \notin \bigcup_{\alpha \in A} S_{\alpha} \iff \chi \in S_{\alpha}^{c}$ $\forall d \in A$
 $\iff \chi \in \bigcap_{\alpha \in A} S_{\alpha}^{c}$

exercise

Since a set is itself a mathematical object, a set can itself contain sets.

Definition

The power set $\mathcal{P}(S)$ of a set S is the set of all subsets of S.

Example

Let
$$S = \{a, b, c\}$$
.
Then $\mathcal{P}(S) = \{c, b, c\}, \{ca, c, b, c\}, \{ca, c, b, c\}, \{ca, c\}, \{$

Another way of building a new set from two old ones is the Cartesian product of two sets.

Definition

Let S, T be sets. The Cartesian product $S \times T$ is defined as the set of tuples with elements from S, T, i.e

$$S \times T = \{(s, t) : s \in S \text{ and } t \in T\}.$$

This can also be extended inductively to a finite family of sets.

Ordered set

(x, x2)

Definition

A relation R on a set X is a subset of $X \times X$. A relation \leq is called a *partial order* on X if it satisfies

- 1 reflexivity: $\chi \leq \chi \quad \forall x \in X$
- transitivity: X, Y, ZEX, X=Y, Y=Z => X=Z
 anti-symmetry: X, YEX, X=Y and Y=X implies X=Y

The pair (X, \leq) is called a *partially ordered set*.

A *chain* or *totally ordered* set $C \subseteq X$ is a subset with the property $x \leq y$ or $y \leq x$ for any $x, y \in C$.

The real numbers with the usual ordering, (\mathbb{R}, \leq) are totally ordered.

Example

The power set of a set X with the ordering given by \subseteq , $(\mathcal{P}(X), \subseteq)$ is a partially ordered set.

¥

Let $X = \{a, b, c, d\}$. What is $\mathcal{P}(X)$? Find a chain in $\mathcal{P}(X)$. $\mathcal{P}(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{b, c\}, \{c, d\}, \{b, d\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{b, c, d\}, \{a, b, d\}, \{a, c, d\}, X\}$

$$C = \{ \{ \phi, \{ a \}, \{ a \}, \{ a, b \}, \{ a, b \}, c \} \}$$

Consider the set $C([0,1],\mathbb{R}) := \{f : [0,1] \to \mathbb{R} : f \text{ is continuous}\}.$

For two functions $f, g \in C([0, 1], \mathbb{R})$, we define the ordering as $f \leq g$ if $f(x) \leq g(x)$ for $x \in [0, 1]$. Then $(C([0, 1], \mathbb{R}), \leq)$ is a partially ordered set.

Can you think of a chain that is a subset of $(C([0,1],\mathbb{R})?$

Definition

A non-empty partially ordered set (X, \leq) is *well-ordered* if every non-empty subset $A \subseteq X$ has a mimimum element.

Example: (\mathbb{N}, \leq) is... well-ordered (\mathbb{R}, \leq) is... not well-ordered $S_{-}(O, 1)$

$$(\mathbb{R}, \leq)$$

Definition

Let (X, \leq) be a partially ordered set and $S \subseteq X$.

Then $x \in X$ is an *upper bound* for *S* if for all $s \in S$ we have $s \leq x$. Similarly, $y \in X$ is a *lower bound* for *S* if for all $s \in S$, $y \leq s$.

If there exists an upper bound for S, we call S bounded above and if there exists a lower bound for S, we call S bounded below. If S is bounded above and bounded below, we say S is bounded.

We can also ask if there exists a least upper bound or a greatest lower bound.

Definition

Let (X, \leq) be a partially ordered set and $S \subseteq X$.

We call $x \in X$ least upper bound or supremum, denoted $x = \sup S$, if x is an upper bound and for any other upper bound $y \in X$ of S we have $x \leq y$.

Likewise, $x \in X$ is the greatest lower bound or infimum for S, denoted $x = \inf S$, if it is a lower bound and for any other lower bound $y \in X$, $y \le x$.

Note that the supremum and infimum of a bounded set do not necessarily need to exist. However, if they do exists they are unique, which justifies the article *the* (exercise). Nevertheless, the reals have a remarkable property, which we will take as an axiom.

Completeness Axiom

Let $S \subseteq \mathbb{R}$ be bounded above. Then there exists $r \in \mathbb{R}$ such that $r = \sup S$, i.e. S has a least upper bound.

By setting $S' = -S := \{-s : s \in S\}$ and noting $inf S = -\sup S'$, we obtain a similar statement for infima if S is bounded below. As mentioned above, this property is fairly special, for example it fails for the rationals.

Example

Let $S = \{q \in \mathbb{Q} : x^2 < 7\}$. Then S is bounded above in \mathbb{Q} , but there exists no least upper bound in \mathbb{Q} .

There is a nice alternative characterization for suprema in the real numbers.

Proposition

Let $S \subseteq \mathbb{R}$ be bounded above. Then $r = \sup S$ if and only if r is an upper bound and for all $\epsilon > 0$ there exists an $s \in S$ such that $r - \epsilon < s$.

Proof. (=>) We prove the contrapositive. Suppose r is either not an upper bound or ZED such that USES r- E≥S. If r is not an upper bound for S, then rtsups. In the second case, r-E is an upper bound for S. Since E>O, r-E < r, so r + sup S.

Proof. (
$$\Leftarrow$$
) By contradiction.
Proof. (\Leftarrow) Suppose r is an upper bound for S and
 $4 \le > 0$ $3 \le S$ such that $r - \le < S$, but $r \ne sup S$
 $=) r > sup S \implies r - sup S > 0$
By assumption (use $\varepsilon = r - sup S$), $\exists S \in S$ such that
Using the same trick, we may obtain a similar result for infima. $r - (r - sup S) < S$.
 $\Rightarrow sup S < S$.
Example
Consider $S = \{1/n : n \in \mathbb{N}\}$. Then $\sup S = 1$ and $\inf S = 0$.
 $\therefore r = sup S$

Functions

Definition

A function f from a set X to a set Y is a subset of $X \times Y$ with the properties:

1 For every
$$x \in X$$
, there exists a $y \in Y$ such that $(x, y) \in f$

2) If
$$(x, y) \in f$$
 and $(x, z) \in f$, then $y = z$.

X is called the *domain* of f.

How does this connect to other descriptions of functions you may have seen?

Example

For a set X, the identity function is:

$$1_X: X \to X, \quad x \mapsto x$$

Definition (Image and pre-image)

Let $f : X \to Y$ and $A \subseteq X$ and $B \subseteq Y$.

- The *image* of f is the set $f(A) := \{f(x) : x \in A\}$.
- The pre-image of f is the set $f^{-1}(B) := \{x : f(x) \in B\}.$

Helpful way to think about it for proofs:

Image: If $y \in f(A)$, then $y \in Y$, and there exists an $x \in A$ such that y = f(x). **Pre-image:** If $x \in f^{-1}(B)$, then $x \in X$ and $f(x) \in B$.

Definition (Surjective, injective and bijective)

Let $f: X \to Y$, where X and Y are sets. Then

Y OF TORONTO

- f is *injective* if $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$
- f is surjective if for every $y \in Y$, there exists an $x \in X$ such that y = f(x)
- f is bijective if it is both injective and

References

Marcoux, Laurent W. (2019). *PMATH 351 Notes*. url: https://www.math.uwaterloo.ca/ lwmarcou/notes/pmath351.pdf

Runde ,Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Zwiernik, Piotr (2022). *Lecture notes in Mathematics for Economics and Statistics*. url: http://84.89.132.1/ piotr/docs/RealAnalysisNotes.pdf

