Exercises for Module 3: Set Theory II and Metric Spaces I 1. Show that for sets $A, B \subseteq X$ and $f : X \to Y$, $f(A \cap B) \subseteq f(A) \cap f(B)$.

2. Let $f: X \to Y$ and $B \subseteq Y$. Prove that $f(f^{-1}(B)) \subseteq B$, with equality iff f is surjective.

First we show
$$f(f^{-1}(B)) \leq B$$
 for any $f: X \Rightarrow Y$.
Let $y \in f(f^{-1}(B))$. Then $\exists x \in f^{-1}(B)$ s.t. $y = f(x)$.
Since $x \in f^{-1}(B)$, $f(x) \in B$. Thus $y = f(x) \in B$.
Next, suppose that f is surjective. We show that $B \leq f(f^{-1}(B))$.
Let $y \in B$. Since f is surjective, $\exists x \in X$ s.t. $f(x) = y$. Since
 $y \in B$, $\pi \in f^{-1}(B)$. Thus $y \in f(f^{-1}(B))$.
Finally we show that $f(f^{-1}(B)) = B = 1$ is surjective.
We know the contropositive. Suppose f is not surjective.
Then $\exists y \in Y$ s.t. $f(x) \neq y$ the X. However, since $f^{-1}(Y) = X$ by definition,
 $y \notin f(f^{-1}(Y))$. So $\exists B \in Y^{-1}(Y)$ s.t. $Y \notin f(f^{-1}(Y))$.

3. Prove that $f(\bigcup_{i\in I}A_i) = \bigcup_{i\in I}f(A_i)$, where $f: X \to Y$, $A_i \subseteq X \,\forall i \in I$.

Let
$$y \in f(\bigcup_{i \in I} A_{i})$$

 $() = \exists x \in \bigcup_{i \in I} A_{i} \quad s.t. \quad f(x) = y$
 $() = \exists i^{*} \in I \quad s.t. \quad x \in A_{i^{*}}, \quad f(x) = y$
 $() \quad y \in f(A_{i^{*}}) \quad for \quad some \quad i^{*} \in I$
 $() \quad y \in \bigcup_{i \in I} f(A_{i})$

4. Show that \mathbb{N} and \mathbb{Z} have the same cardinality.

Proof.
Since
$$N \subseteq \mathbb{Z}$$
, clearly we can find an injection from N to \mathbb{Z} . In
particular, let $f: |N| \rightarrow \mathbb{Z}$ be defined as $f(n) = n$. f is an injection.
It remains to show that there is an injection from \mathbb{Z} to \mathbb{N} .
Define the following function: $g: \mathbb{R} \rightarrow IN$
 $g(0) = 1$
for $z \neq 0$, $g(\mathbb{Z}) = \begin{cases} 2\mathbb{Z} \neq 1 & \text{if } \mathbb{Z} > 0 \\ -2\mathbb{Z} & \text{if } \mathbb{Z} < 0 \end{cases}$
 q is an injection.
Therefore by Cantor-Bernstein, $|IN| = |\mathbb{Z}|$.
Note: g is in fact
 a bijlection, I

5. Show that $|(0,1)| = |(1,\infty)|$.

Let
$$f:(0,1) \rightarrow (1,\infty)$$
 be defined as $f(x) = \frac{1}{x}$.
f is a bijection.
This is probably clear, but here is a proof:
Proof
Let $\frac{1}{x} = \frac{1}{y}$. Then $x = y$ f is an injection
Let $y \in (1,\infty)$. Then $x = \frac{1}{y} \in (0,1)$ is such that $f(x) = y$.
... f is a surjection.

6. Show that the infinity norm $||x||_{\infty}, x \in \mathbb{R}^n$, is a norm.

$$\begin{split} \| X \|_{\infty} &:= \max_{i=1,...,n} \| Y_i \| \\ & \text{ (b) show that } \| \cdot \|_{\infty} \text{ satisfies the 3 conditions.} \\ & \text{ (i) Positive definite} \\ & \text{ Clearly } \| X \|_{\infty} \geq 0 \quad \forall x \in \mathbb{R}^n \text{ since } \| X_i \|_{> 0} \quad \forall X_i \in \mathbb{R}. \\ & \text{ Also, if } 0 = \| X \|_{\infty} = \max_{i=1,...,n} \| X_i \|_{i} \text{ then } \| X_i \|_{= 0} \quad \forall i = 1, ..., n \\ & \text{ so } x = 0 = (0, ..., 0) \\ & \text{ (i) Homogeneity.} \\ & \text{ Let } x \in \mathbb{R}^n, \quad o \in \mathbb{R}. \\ & \text{ Then } \| \sigma X \|_{\infty} = \max_{i=1,...,n} \| \sigma X^i \|_{i=1,...,n} \\ & \text{ (ii) A inequality } \\ & \text{ Let } x, y \in \mathbb{R}^n. \\ & \text{ Then } \| X \|_{\infty} = \max_{i=1,...,n} \| X_i \|_{i=1,...,n} \\ & \text{ then } \| X \|_{\infty} = \max_{i=1,...,n} \| X_i \|_{i=1,...,n} \\ & \text{ Let } x, y \in \mathbb{R}^n. \\ & \text{ Then } \| X \|_{\infty} = \max_{i=1,...,n} \| X_i \|_{i=1,...,n} \\ & \text{ then } \| X \|_{\infty} = \max_{i=1,...,n} \| X_i \|_{i=1,...,n} \\ & \text{ then } \| X \|_{\infty} = \max_{i=1,...,n} \| X_i \|_{i=1,...,n} \\ & \text{ then } \| X \|_{\infty} = \max_{i=1,...,n} \| X_i \|_{i=1,...,n} \\ & \text{ then } \| X \|_{\infty} = \max_{i=1,...,n} \| X_i \|_{i=1,...,n} \\ & \text{ then } \| X \|_{\infty} = \max_{i=1,...,n} \| X_i \|_{i=1,...,n} \\ & \text{ then } \| X \|_{\infty} = \max_{i=1,...,n} \| X_i \|_{i=1,...,n} \\ & \text{ then } \| X \|_{\infty} = \max_{i=1,...,n} \| X_i \|_{\infty} \\ & \text{ then } \| X \|_{\infty} \| X_i \|_{\infty} \\ & \text{ then } \| X \|_{\infty} \| X_i \|_{\infty} \\ & \text{ then } \| X \|_{\infty} \| X_i \|_{\infty} \| X_i \|_{\infty} \\ & \text{ then } \| X \|_{\infty} \| X_i \|_{\infty} \| X_i \|_{\infty} \\ & \text{ then } \| X \|_{\infty} \| X_i \|_{\infty} \| X_i \|_{\infty} \\ & \text{ then } \| X \|_{\infty} \| X_i \|_{\infty} \| X_i \|_{\infty} \| X_i \|_{\infty} \\ & \text{ then } \| X \|_{\infty} \| X_i \|_{\infty} \\ & \text{ then } \| X \|_{\infty} \| X \|_{\infty} \| X_i \|_{\infty} \\ & \text{ then } \| X \|_{\infty} \\ & \text{ then } \| X \|_{\infty} \| X \|_{\infty} \| X \|_{\infty} \\ & \text{ then } \| X \|_{\infty} \\ & \text{ then } \| X \|_{\infty} \| X \|$$

7. Let (X, d) be any metric space, and define $\tilde{d}: X \times X \to \mathbb{R}$ by

$$\tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)}, \quad x,y \in X.$$

Show that \tilde{d} is a metric on X.

Proof. Since d is a metric, it is positive definite, symmetric, and satisfies the

$$\Delta$$
-ing. We show these same properties held for \mathcal{A} .
(i) positive definite.
 $\forall x, y \in X$, we have $d(x, y) \geq 0 \implies \frac{d(x, y)}{1 + d(x, y)} \geq 0$ and $d(x, y) = 0$
(i) Symmetry
Follows from symmetry of $d(x, y)$
(ii) Δ inequality
 $(f^{1}(x) = \frac{1+x-x}{(1+x)^{2}} = \frac{1}{(1+x)^{2}} > 0$ $\forall x \in [0, \infty) \rightarrow \mathbb{R}$ defined by $x \mapsto \frac{x}{1+x}$ is increasing
 $d(x, z) = \frac{d(x, z)}{1 + d(x, z)}$
Let $x, y, z \in X$. Then
 $d(x, z) = \frac{d(x, z)}{1 + d(x, z)}$ since f is increasing and
 $\in \frac{d(x, y) + d(y, z)}{1 + d(x, y) + d(y, z)}$ since f is increasing and
 $= \frac{d(x, y)}{1 + d(x, y)} + \frac{d(y, z)}{1 + d(x, y) + d(y, z)} = \mathcal{A}(x, y) + \mathcal{A}(y, z)$

8. Let X be a set and define $d: X \times X \to \mathbb{R}$ by d(x, x) = 0 and d(x, y) = 1 for $x \neq y \in X$. Prove that d is a metric on X. What do open balls look like for different radii r > 0?

Proof
$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$

Clearly d is positive definite and symmetric by definition
To show the A inequality, let $x,y,z \in X$.
 $(ase | x = y = z = z = Then d(x,z) = 0 = d(x,y) + d(y,z)$
 $\frac{case \lambda}{2} = x = y \neq z \text{ or } x \neq y = z = Then d(x,z) = 1 and d(x,y) + d(y,z) = 1$
 $\frac{case \lambda}{2} = x = z \neq y = z = Then d(x,z) = 0 and d(x,y) + d(y,z) = 1$
 $\frac{case \lambda}{2} = x \neq y = z = Then d(x,z) = 0 and d(x,y) + d(y,z) = 2 = 1$
Then d(x,z) = 1 $c = d(x,y) + d(y,z) = 2$
Then d(x,z) = 1 $c = d(x,y) + d(y,z)$.

Open balls. If $r \in (0,1]$, then balls are just points, i.e. $B_r(x_0) = \{x_0\}$ If r > 1, then the ball is the whole set, i.e. $B_r(x_0) = X$. This means that every set in X is open!