Exercises for Module 3: Set Theory II and Metric Spaces I

1. Show that for sets $A, B \subseteq X$ and $f: X \to Y, f(A \cap B) \subseteq f(A) \cap f(B)$.

2. Let $f: X \to Y$ and $B \subseteq Y$. Prove that $f(f^{-1}(B)) \subseteq B$, with equality iff f is surjective.

3. Prove that $f(\bigcup_{i\in I}A_i) = \bigcup_{i\in I}f(A_i)$, where $f: X \to Y$, $A_i \subseteq X \,\forall i \in I$.

4. Show that $\mathbb N$ and $\mathbb Z$ have the same cardinality.

5. Show that $|(0,1)| = |(1,\infty)|$.

6. Show that the infinity norm $||x||_{\infty}, x \in \mathbb{R}^n$, is a norm.

7. Let (X, d) be any metric space, and define $\tilde{d}: X \times X \to \mathbb{R}$ by

$$\tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)}, \quad x,y \in X.$$

Show that \tilde{d} is a metric on X.

8. Let X be a set and define $d: X \times X \to \mathbb{R}$ by d(x, x) = 0 and d(x, y) = 1 for $x \neq y \in X$. Prove that d is a metric on X. What do open balls look like for different radii r > 0?