Module 3: Set theory and metrics
 Operational math bootcamp

Statistical Sciences
UNIVERSITY OF TORONTO

Emma Kroell
University of Toronto
July 13, 2023

Outline

- More on set theory
- Cardinality of sets
- Metrics and norms

Recall

Definition (Image and pre-image)

Let $f: X \rightarrow Y$ and $A \subseteq X$ and $B \subseteq Y$.

- The image of f is the set $f(A):=\{f(x): x \in A\}$.
- The pre-image of f is the set $f^{-1}(B):=\{x: f(x) \in B\}$.

Definition (Surjective, injective and bijective)

Let $f: X \rightarrow Y$, where X and Y are sets. Then

- f is injective if $x_{1} \neq x_{2}$ implies $f\left(x_{1}\right) \neq f\left(x_{2}\right)$
- f is surjective if for every $y \in Y$, there exists an $x \in X$ such that $y=f(x)$
- f is bijective if it is both injective and bijective

Proposition
Let $f: X \rightarrow Y$ and $A \subseteq X$. Prove that $A \subseteq f^{-1}(f(A))$, with equality jiff f is injective.
Proof. First we show $A \subseteq f^{-1}(f(f(A))$.
Let $x \in A$. Then $f(x) \in f(A)$ by definition. Again by definition, $x \in f^{-1}(f(A))$
Now suppose f is injective. We want to show that $f^{-1}(f(A)) \subseteq A$. Let $x \in f^{-1}(f(A))$. By deft $f(x) \in f(A)$. By definition, $\exists \tilde{x} e A$ such that
$f(x)=f(\hat{x})$. $f(x)=f(\hat{x})$. Since f is injective, $x=\tilde{x} . \therefore x \in A$.

Cardinality

Intuitively, the cardinality of a set A, denoted $|A|$, is the number of elements in the set. For sets with only a finite number of elements, this intuition is correct. We call a set with finitely many elements finite.

We say that the empty set has cardinality 0 and is finite.
*) $f X$ is finite set of cardinality n, then the cardinality of $\mathcal{P}(X)$ is 2^{n}.
Proof. We prove this by induction on $n \in \mathbb{N}_{0}$.
Base case: $n=0 \Rightarrow X=\varnothing$
$P(X)=P(\phi)=\{\phi\}$. So $P(x)$ has cardinality
$1=2^{\circ}$. The statement holds for $n=0$.
Inductive hypothesis: suppose $(*)$ holds for some $n \in \mathbb{N}_{0}$.

Let X be a set with cardinality $n+1$, i.e. X has $n+1$ elements. Let's call then x_{1}, \ldots, x_{n+1}.

$$
\begin{aligned}
X & =\underbrace{\left\{x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right\}}_{A} \\
& \left.=x_{1}, x_{2}, \ldots, x_{n}\right\} \cup \underbrace{\left\{x_{n+1}\right\}}_{B} \\
& \Rightarrow P(A)=2^{n} \text { by IH }
\end{aligned}
$$

Any subset of X must either be a subset of A or contain x_{n+1}. Let's count those of the latter form.

$$
\begin{aligned}
& 1+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}=\sum_{k=0}^{n}\binom{n}{k}=2^{n} \\
& \left\{x_{n+1}\right\} \substack{\begin{subarray}{c}{x_{i}, x_{n} \\
i=1, n+n} }}
\end{aligned}
$$

Therefore $|P(x)|=2^{n}+2^{n}=2^{n+1}$. Thus the claim holds by induction.

Definition
Two sets A and B have same cardinality, $|A|=|B|$, if there exists bijection $f: A \rightarrow B$.
Example
Which is bigger, \mathbb{N} or \mathbb{N}_{0} ?

$$
\begin{aligned}
& |\mathbb{N}|=\left|\mathbb{N}_{0}\right| \\
& f: \mathbb{N}_{0} \rightarrow \mathbb{N} \quad n \mapsto n+1 \text { is a bjection }
\end{aligned}
$$

Cantor-Schröder-Bernstein

Definition

We say that the cardinality of a set A is less than the cardinality of a set B, denoted $|A| \leq|B|$ if there exists an injection $f: A \rightarrow B$.

Theorem (Cantor-Bernstein)
 Let A, B, be sets. If $|A| \leq|B|$ and $|B| \leq|A|$, then $|A|=|B|$.

Example

$$
|\mathbb{N}|=|\mathbb{N} \times \mathbb{N}|
$$

Proof that $|\mathbb{N}|=|\mathbb{N} \times \mathbb{N}|$: First we show $|\mathbb{N}| \leq|\mathbb{N} \times \mathbb{N}|$.
$f: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N} \quad n \mapsto(n, 1)$ is an injection, so $|\mathbb{N}| \leq|\mathbb{N} \times \mathbb{N}|$.
Next, show $|\mathbb{N} \times \mathbb{N}| \leq|\mathbb{N}|$.

$$
g: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \quad(n, m) \mapsto 2^{n} 3^{m}
$$

We claim g is an injection. Let $n_{1}, n_{2}, m_{1}, m_{2} \in \mathbb{N}$. such that $2^{n_{1}} 3^{m_{1}}=2^{n_{2}} 3^{m_{2}}$. Bin the Fundarmentai Thu of Arithmetic, we must have $n_{1}=n_{2}, m_{1}=m_{2}$ $\therefore g$ is injective, $|\mathbb{N} \times \mathbb{N}|=|\mathbb{N}|$ by $C B$ Thm

Definition

Let A be a set.
(1) A is finite if there exists an $n \in \mathbb{N}$ and a bijection $f:\{1, \ldots, n\} \rightarrow A$

2 A is countably infinite if there exists a bijection $f: \mathbb{N} \rightarrow A$
(3) A is countable if it is finite or countably infinite
(4) A is uncountable otherwise

Example
The rational numbers are countable, and in fact $|\mathbb{Q}|=|\mathbb{N}|$.
Proof. First we show $|\mathbb{N}| \leq\left|\mathbb{Q}^{+}\right|$. $\mathbb{Q}^{+}:=\{x \in \mathbb{Q}: x>0\}$

This listing method is an injection from酸 \qquad \mathbb{N} to \mathbb{Q}^{+}.

Next, we show that $\left|\mathbb{Q}^{+}\right| \leq|\mathbb{N} \times \mathbb{N}|$.
$f: \mathbb{Q}^{+} \rightarrow \mathbb{N} \times \mathbb{N}: \frac{p}{q} \rightarrow(p, q)$
is an injection.
Since $|\mathbb{N} \times \mathbb{N}|=|N|$, then $\left||\mathbb{N}|=\left|\mathbb{Q}^{+}\right|\right.$.

We can extend this to \mathbb{Q} as follows:
Let $f: \mathbb{N} \rightarrow \mathbb{Q}^{+}$be a bijection.
Then define $g: \mathbb{N} \rightarrow \mathbb{R}$ as follows:

$$
\begin{aligned}
& g(l)=0 \\
& g(n)=\left\{\begin{aligned}
f(n) & n \text { is even } \\
-f(n) & n \text { is odd }
\end{aligned}\right.
\end{aligned}
$$ for $n>1$

g is bijection $\therefore \mathbb{Q}$ is countable

Theorem

The cardinality of \mathbb{N} is smaller than that of $(0,1)$.

Proof.

First, we show that there is an injective map from \mathbb{N} to $(0,1)$.

Next, we show that there is no surjective map from \mathbb{N} to $(0,1)$. We use the fact that every number $r \in(0,1)$ has a binary expansion of the form $r=0 . \sigma_{1} \sigma_{2} \sigma_{3} \ldots$ where $\sigma_{i} \in\{0,1\}, i \in \mathbb{N}$.

Proof.

Now we suppose in order to derive a contradiction that there does exist a surjective map f from \mathbb{N} to $(0,1)$., i.e. for $n \in \mathbb{N}$ we have $f(n)=0 . \sigma_{1}(n) \sigma_{2}(n) \sigma_{3}(n) \ldots$. This means we can list out the binary expansions, for example like

$$
\begin{aligned}
& f(1)=0.00000000 \ldots \\
& f(2)=0.1111111111 \ldots \\
& f(3)=0.0101010101 \ldots \\
& f(4)=0.1010101010 \ldots
\end{aligned}
$$

We will construct a number $\tilde{r} \in(0,1)$ that is not in the image of f.

Proof.

Define $\tilde{r}=0 . \tilde{\sigma}_{1} \tilde{\sigma}_{2} \ldots$, where we define the nth entry of \tilde{r} to be the the opposite of the nth entry of the nth item in our list:

$$
\tilde{\sigma}_{n}= \begin{cases}1 & \text { if } \sigma_{n}(n)=0 \\ 0 & \text { if } \sigma_{n}(n)=1\end{cases}
$$

Then \tilde{r} differs from $f(n)$ at least in the nth digit of its binary expansion for all $n \in \mathbb{N}$. Hence, $\tilde{r} \notin f(\mathbb{N})$, which is a contradiction to f being surjective. This technique is often referred to as Cantor's diagonal argument.

Proposition

$(0,1)$ and \mathbb{R} have the same cardinality.

Proof.

$$
f: \mathbb{R} \rightarrow(0,1) \quad x \mapsto \frac{1}{\pi}\left(\arctan (x)+\frac{\pi}{2}\right)
$$

is a bijection
We have shown that there are different sizes of infinity, as the cardinality of \mathbb{N} is infinite but still smaller than that of \mathbb{R} or $(0,1)$. In fact, we have

$$
|\mathbb{N}|=\left|\mathbb{N}_{0}\right|=|\mathbb{Z}|=|\mathbb{Q}|<|\mathbb{R}| .
$$

Because of this, there are special symbols for these two cardinalities: The cardinality of \mathbb{N} is denoted \aleph_{0}, while the cardinality of \mathbb{R} is denoted \mathfrak{c}.

Metric Spaces

Definition (Metric)
A metric on a set X is a function $d: X \times X \rightarrow \mathbb{R}$ that satisfies:
(a) Positive definiteness: $d(x, y) \geq 0 \quad \forall x, y \in X$ and
(b) Symmetry: $x, y \in x$, $d(x, y)=0 \Longleftrightarrow x=y$
$x, y \in x$, then $d(x, y)=d(y, x)$
(c) Triangle inequality:

$$
x, y, z \in x \in d(x, y)+d(y, z) \geq d(x, z)
$$

Example (\mathbb{R}^{n} with the Euclidean distance)

$$
d(x, y)=\sqrt{\sum_{j=1}^{n}\left(x_{j}-y_{j}\right)^{2}} \quad x, y \in \mathbb{R}^{n}
$$

\mathbb{R}^{n} with the Euclidean distance is a metric space
$|x-y|$ absolute value on \mathbb{R}^{1}

$$
\nabla \mathbb{F}=\mathbb{R} \text { or } \mathbb{C}
$$

Definition (Norm)
A norm on an \mathbb{F}-vector space E is a function $\|\cdot\|: E \rightarrow \mathbb{R}$ that satisfies:
(a) Positive definiteness: $\|x\| \geq 0 \forall x \in E$ and $\|x\|=0 \Leftrightarrow x=0$
(b) Homogeneity: $x \in E, \alpha \in \mathbb{F},\|\alpha x\|=\mid \alpha \backslash\|x\|$
(c) Triangle inequality: $x, y \in E \quad\|x+y\| \leq\|x\|+\|y\|$

A vector space with a norm is called a normed space. A normed space is a 而etric space using the metric $d(x, y)=\|x-y\|$.

Example (p-norm on \mathbb{R}^{n})
The p-norm is defined for $p \geq 1$ for a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ as

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

The infinity norm is the limit of the p-norm as $p \rightarrow \infty$, defined as

$$
\|x\|_{\infty}=\max _{i=1, \ldots, n}\left|x_{i}\right|
$$

Example (p-norm on $C([0,1] ; \mathbb{R})$)
If we look at the space of continuous functions $C([0,1] ; \mathbb{R})$, the p-norm is

$$
\|f\|_{p}=\left(\int_{0}^{1}|f(x)|^{p} d x\right)^{1 / p}
$$

and the ∞-norm (or sup norm) is

$$
\|f\|_{\infty}=\max _{x \in[0,1]}|f(x)|
$$

Definition

A subset A of a metric space (X, d) is bounded if there exists $M>0$ such that $d(x, y)<M$ for all $x, y \in A$.

Definition

Let (X, d) be a metric space. We define the open ball centred at a point $x_{0} \in X$ of radius $r>0$ as

$$
B_{r}\left(x_{0}\right):=\left\{x \in X: d\left(x, x_{0}\right)<r\right\} .
$$

Example

In \mathbb{R} with the usual norm (absolute value), open balls are symmetric open intervals, ie.

$$
B_{r}\left(x_{0}\right)=\left(x_{0}-r, x_{0}+r\right)
$$

Example: Open ball in \mathbb{R}^{2} with different metrics

(a) 1-norm (taxicab metric)
(b) 2-norm (Euclidean metric)
$d(x, y)=\sum_{i=1}^{2}\left|x_{i}-y_{i}\right|$ Figure: $B_{r}(0)$ for different metrics

(c) ∞-norm
$\max _{j=1,2}\left|x_{j}-y_{i}\right|$

References

Runde, Volker (2005). A Taste of Topology. Universitext. url:
https://link.springer.com/book/10.1007/0-387-28387-0
Zwiernik, Piotr (2022). Lecture notes in Mathematics for Economics and Statistics. url: http://84.89.132.1/ piotr/docs/RealAnalysisNotes.pdf

