Module 3: Set theory and metrics Operational math bootcamp

Emma Kroell

University of Toronto

July 13, 2023

Outline

- More on set theory
- Cardinality of sets
- Metrics and norms

Recall

Definition (Image and pre-image)

Let $f : X \to Y$ and $A \subseteq X$ and $B \subseteq Y$.

- The *image* of f is the set $f(A) := \{f(x) : x \in A\}$.
- The pre-image of f is the set $f^{-1}(B) := \{x : f(x) \in B\}.$

Definition (Surjective, injective and bijective)

Let $f: X \to Y$, where X and Y are sets. Then

- f is injective if $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$
- f is surjective if for every $y \in Y$, there exists an $x \in X$ such that y = f(x)
- f is bijective if it is both injective and bijective

Proposition

Let $f: X \to Y$ and $A \subseteq X$. Prove that $A \subseteq f^{-1}(f(A))$, with equality iff f is injective. Proof. First we show $A \subseteq f^{-1}(f(A))$. Let $X \in A$. Then $f(x) \in f(A)$ by definition. Again by definition, $X \in f^{-1}(f(A))$.

Now suppose f is injective. We want to show that $f^{-1}(f(A)) \subseteq A$. Let $x \in f^{-1}(f(A))$. By def, $f(x) \in f(A)$. By definition, $\exists \chi \in A$ such that $f(x) = f(\chi)$. Since f is injective, $\chi = \chi$. $\therefore \chi \in A$.

Cardinality

Intuitively, the *cardinality* of a set A, denoted |A|, is the number of elements in the set. For sets with only a finite number of elements, this intuition is correct. We call a set with finitely many elements finite.

We say that the empty set has cardinality 0 and is finite.

Proposition

atistical Sciences

 $\mathbf{\nabla}$

f X is finite set of cardinality n, then the cardinality of $\mathcal{P}(X)$ is 2^n .

Proof. We prove this by induction on
$$n \in \mathbb{N}_0$$
.
Base case: $n=0 \implies X = \emptyset$
 $\mathcal{P}(X) = \mathcal{P}(\emptyset) = \mathcal{E}(\emptyset^2)$. So $\mathcal{B}(X)$ has cardinality
 $1 = 2^\circ$. The statement holds for $n=0$.
Inductive hypothesis: suppose \mathcal{D} holds for
Some $n \in \mathbb{N}_0$.

Let X be a set with cardinality
$$n+1$$
, i.e. X has
 $n+1$ elements. Let's call then $X_{1,...,} X_{n+1}$.
 $X = E X_{1,} X_{a_{1}} \dots X_{n,} X_{n+1} X_{n+1}$
 $= E X_{1,} X_{a_{1}} \dots X_{n} X_{n} X_{n+1} X_{n$

Definition

Two sets A and B have same cardinality, |A| = |B|, if there exists bijection $f : A \to B$.

Example

Which is bigger, \mathbb{N} or \mathbb{N}_0 ?

$$|W| = |W^{\circ}|$$

2

Cantor-Schröder-Bernstein

Definition

We say that the cardinality of a set A is less than the cardinality of a set B, denoted $|A| \leq |B|$ if there exists an injection $f : A \to B$.

Theorem (Cantor-Bernstein)

Let A, B, be sets. If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.

Example $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$

Proof that
$$|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$$
: First we show $|\mathbb{N}| \leq |\mathbb{N} \times \mathbb{N}|$.
 $f: \mathbb{N} \rightarrow |\mathbb{N} \times \mathbb{N}|$ $n \mapsto (n, i)$ is an injection, so
 $|\mathbb{N}| \leq |\mathbb{N} \times \mathbb{N}|$.
Next, show $|\mathbb{N} \times |\mathbb{N}| \leq |\mathbb{N}|$.
 $g: |\mathbb{N} \times |\mathbb{N} \rightarrow |\mathbb{N}| (n, m) \mapsto 2^n \mathcal{J}_{\mathcal{N} \in \mathbb{N}}^m$
 $We claim g is an injection. Let $n, n_a, m, m_a \in \mathbb{N}$
 $Such that a^n; g^m; = 2^m \mathcal{J}_{\mathcal{N}}^m$. By the Fundamental
 $Thm of Arcthmetic, we must have $n_i = n_a, m_i = m_a$.
 $\therefore g$ is injective, $|\mathbb{N} \times |\mathbb{N}| = |\mathbb{N}|$ by CB Thm$$

Definition

Let A be a set.

^0 A is *finite* if there exists an $n \in \mathbb{N}$ and a bijection $f: \{1, \ldots, n\} o A$

(2) A is countably infinite if there exists a bijection $f : \mathbb{N} \to A$

3 A is *countable* if it is finite or countably infinite

4 A is *uncountable* otherwise

Example

The rational numbers are countable, and in fact $|\mathbb{Q}| = |\mathbb{N}|$.

Proof. First we show $|\mathbb{N}| \leq |\mathbb{Q}^+|$. $\mathbb{Q}^+ := \xi \chi \in \mathbb{Q} : \chi > \mathcal{O}^{-1}$

Next, we show that $|\mathbb{Q}^+| \leq |\mathbb{N} \times \mathbb{N}|$.

-

We can extend this to ${\mathbb Q}$ as follows:

Let
$$f: N \rightarrow Qt$$
 be a bijection.
Then define $q: N \rightarrow Q$ as follows:
 $q(n) = 0$
 $q(n) = \sum_{-f(n)}^{+} n \text{ is even}$
 $for n > 1$
For $n > 1$

Theorem

The cardinality of \mathbb{N} is smaller than that of (0, 1).

Proof.

First, we show that there is an injective map from \mathbb{N} to (0,1).

Next, we show that there is no surjective map from \mathbb{N} to (0, 1). We use the fact that every number $r \in (0, 1)$ has a binary expansion of the form $r = 0.\sigma_1\sigma_2\sigma_3...$ where $\sigma_i \in \{0, 1\}, i \in \mathbb{N}$.

Proof.

Now we suppose in order to derive a contradiction that there does exist a surjective map f from \mathbb{N} to (0, 1), i.e. for $n \in \mathbb{N}$ we have $f(n) = 0.\sigma_1(n)\sigma_2(n)\sigma_3(n)\ldots$ This means we can list out the binary expansions, for example like

$$f(1) = 0.00000000...$$

$$f(2) = 0.111111111...$$

$$f(3) = 0.0101010101...$$

$$f(4) = 0.101010101...$$

We will construct a number $\tilde{r} \in (0, 1)$ that is not in the image of f.

Proof.

Define $\tilde{r} = 0.\tilde{\sigma}_1 \tilde{\sigma}_2 \dots$, where we define the *n*th entry of \tilde{r} to be the the opposite of the *n*th entry of the *n*th item in our list:

$$\widetilde{\sigma}_n = \begin{cases}
1 & \text{if } \sigma_n(n) = 0, \\
0 & \text{if } \sigma_n(n) = 1.
\end{cases}$$

Then \tilde{r} differs from f(n) at least in the *n*th digit of its binary expansion for all $n \in \mathbb{N}$. Hence, $\tilde{r} \notin f(\mathbb{N})$, which is a contradiction to f being surjective. This technique is often referred to as Cantor's diagonal argument.

Proposition

(0,1) and \mathbb{R} have the same cardinality.

Proof.

We have shown that there are different sizes of infinity, as the cardinality of \mathbb{N} is infinite but still smaller than that of \mathbb{R} or (0, 1). In fact, we have

$$|\mathbb{N}| = |\mathbb{N}_0| = |\mathbb{Z}| = |\mathbb{Q}| < |\mathbb{R}|.$$

Because of this, there are special symbols for these two cardinalities: The cardinality of \mathbb{N} is denoted \aleph_0 , while the cardinality of \mathbb{R} is denoted \mathfrak{c} .

Metric Spaces

Definition (Metric)

A *metric* on a set X is a function $d : X \times X \rightarrow \mathbb{R}$ that satisfies:

(a) Positive definiteness: $d(x,y) \ge 0$ $\forall x,y \in X$ and (b) Symmetry: $\chi, y \in X$, then d(x,y) = 0 $\iff x = y$ (c) Triangle inequality: $\chi, y, z \in X$: d(x, y) + d(y, z) = d(x, z)A set together with a metric is called a metric space.

Example (\mathbb{R}^n with the Euclidean distance)

d(x,y) =
$$\sqrt{\sum_{j=1}^{n} (x_j - y_j)^2} x_j \in \mathbb{R}^n$$

 \mathbb{R}^n with the Euclidean distance is a
metric space

Definition (Norm)

A norm on an \mathbb{F} -vector space E is a function $\|\cdot\|: E \to \mathbb{R}$ that satisfies: (a) Positive definiteness: $\|X\| \ge 0 \quad \forall X \in E \quad \text{avel} \quad \|X\| = 0 \quad \exists X = 0$ (b) Homogeneity: $X \in E$, $X \in \mathbb{F}$, $\|X \wedge \| = \| \wedge \| \|X\|$ (c) Triangle inequality: $X, Y \in E \quad \|X \neq Y\| \leq \|X\| + \|Y\|$ A vector space with a norm is called a normed space. A normed space is a metric space using the metric $d(x, y) = \|x - y\|$.

Example (*p*-norm on \mathbb{R}^n)

The *p*-norm is defined for $p \ge 1$ for a vector $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ as

$$|| x ||_{p} = \left(\sum_{i=1}^{p} |x_{i}|^{p}\right)^{V_{p}}$$

The infinity norm is the limit of the *p*-norm as $p \to \infty$, defined as

$$||x||_{\infty} = \max_{c=1,\dots,n} |x_{n}|$$

Example (*p*-norm on $C([0,1];\mathbb{R})$)

If we look at the space of continuous functions $C([0, 1]; \mathbb{R})$, the *p*-norm is

$$\|f\|^{b} = \left(\int_{1}^{p} |f(x)|_{b} q^{x}\right)_{1/b}$$

and the $\infty-{\sf norm}$ (or sup norm) is

$$\|f\|_{\infty} = \max_{x \in [0, T]} |f(x)|$$

Definition

A subset A of a metric space (X, d) is *bounded* if there exists M > 0 such that d(x, y) < M for all $x, y \in A$.

Definition

Let (X, d) be a metric space. We define the *open ball* centred at a point $x_0 \in X$ of radius r > 0 as

$$B_r(x_0) := \{ x \in X : d(x, x_0) < r \}.$$

Example

In ${\mathbb R}$ with the usual norm (absolute value), open balls are symmetric open intervals, i.e.

$$\mathcal{B}_{r}(x_{o}) = (x_{o} - r, x_{o} + r)$$

Example: Open ball in \mathbb{R}^2 with different metrics

References

Runde, Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Zwiernik, Piotr (2022). *Lecture notes in Mathematics for Economics and Statistics*. url: http://84.89.132.1/ piotr/docs/RealAnalysisNotes.pdf

