Module 4: Metric Spaces and Sequences II

1. Show that the infinite intersection of open sets may not be open and that the infinite union of closed sets may not be closed.

- 2. Find the closure, interior, and boundary of the following sets using Euclidean distance:
 - (i) $\{(x,y) \in \mathbb{R}^2 : y < x^2\} \subseteq \mathbb{R}^2$
- (ii) $[0,1) \times [0,1) \subseteq \mathbb{R}^2$
- (iii) $\{0\} \cup \{1/n \colon n \in \mathbb{N}\} \subseteq \mathbb{R}$

3. Prove the following: Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in a metric space (X,d) that converges to a point $x\in X$. Then x is unique.

- 4. Let $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ be sequences in \mathbb{R} such that $x_n\to x$ and and $y_n\to y$, with $\alpha,x,y,\in\mathbb{R}$.
 - (i) Show that $\alpha x_n \to \alpha x$.
 - (i) Show that $x_n + y_n \to x + y$.

5. Show that discrete metric spaces (i.e. those with the metric defined as define $d\colon X\times X\to\mathbb{R}$ by d(x,x)=0 and d(x,y)=1 for $x\neq y\in X$) are complete.