Module 4: Metric Spaces II Operational math bootcamp

Emma Kroell

University of Toronto

July 17, 2023

Outline

- Open and closed sets
- Sequences
 - Cauchy sequences
 - subsequences
- Continuous functions

Definition (Open and closed sets)

Let (X, d) be a metric space.

- A set $U \subseteq X$ is open if for every $x \in U$ there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq U$.
- A set $F \subseteq X$ is *closed* if $F^c := X \setminus F$ is open.

Note:

$$p$$
, X are both open and closed

Proposition

Let (X, d) be a metric space.

- 1 Let $A_1, A_2 \subseteq X$. If A_1 and A_2 are open, then $A_1 \cap A_2$ is open.
- **2** If $A_i \subseteq X$, $i \in I$ are open, then $\bigcup_{i \in I} A_i$ is open.

Proof. (1) Let
$$A_1, A_2 \subseteq X$$
. If A_1 and A_2 are open, then $A_1 \cap A_2$ is open.
Let $X \in (A_1 \cap A_2)$. Then $X \in A_{,j}$ $\exists E_1 > O \quad s.t.$
 $B_{e_1}(X) \subseteq A_1$. Also, $X \in A_{2,j} \exists E_2 > O \quad s.t.$ $B_{e_2}(X) \subseteq A_2$.
Choose $\mathcal{E} = \min\{E_1, E_2\}$. Then $B_{e_2}(X) \subseteq (A_1 \cap A_2)$.

(2) If $A_i \subseteq X$, $i \in I$ are open, then $\bigcup_{i \in I} A_i$ is open.

Using DeMorgan, we immediately have the following corollary:

Corollary

Let (X, d) be a metric space.

- **1** Let $A_1, A_2 \subseteq X$. If A_1 and A_2 are closed, then $A_1 \cup A_2$ is closed.
- **2** If $A_i \subseteq X$, $i \in I$ are closed, then $\cap_{i \in I} A_i$ is closed.

Definition (Interior and closure)

Let $A \subseteq X$ where (X, d) is a metric space.

- The closure of A is $\overline{A} := \{\chi \in \chi: \forall E > O \ B_{E}(\chi) \cap A \neq \varphi \}$
- The interior of A is A := ENGA: ZED S.L. BE(X) CAS
- The boundary of A is $\partial A := \{x \in X : \forall E > 0, B_{E}(x) \cap A \neq \emptyset$ and $B_{E}(x) \cap A^{-} \neq \emptyset^{2}$

Example

Let $X = (a, b] \subseteq \mathbb{R}$ with the ordinary (Euclidean) metric. Then $\overline{\chi} = [\alpha, b], \quad \tilde{\chi} = (\alpha, b), \quad \partial \chi = \xi \alpha, b \zeta$

Let $A \subseteq X$ where (X, d) is a metric space. Then $\overset{\circ}{A} = A \setminus \partial A$.

Proof. First, we show A = A/2A. Let xEA. JEDO S.L. BECXDEA, Clearly XEA. Also JE>O S. J. BC(R) NAC = Ø. Thus \$43A, SO XEALDA. Next, AVJAEA. Let XEAJJA. Then XEA and $x \notin \partial A$. $X \notin \partial A$ means $\exists E > 0$ s.t. $B_E(x) \cap A = \emptyset$ or $B_E(x) \cap A^c = \emptyset$. Since $x \in A$, the first is false, SO BELXINACE = = BE(X) CA. Thus XEA.

Let (X, d) be a metric space and $A \subseteq X$. \overline{A} is closed and $\overset{\circ}{A}$ is open.

Proof.

Å is open by definition.
We show
$$\overline{A}$$
 closed by showing \overline{A}^{c} is open. Let
 $X \in \overline{A}^{c}$. Then $\exists \widehat{\varepsilon} > 0$ such that $B_{\widetilde{\varepsilon}}(X) \cap A = \emptyset$.
Let $y \in B_{\widetilde{\varepsilon}}(X)$. $y \in \overline{A}^{c}$ by definition. Therefore
 $B_{\widetilde{\varepsilon}}(X) \subseteq \overline{A}^{c}$ by \overline{A}^{c} is open.
Remark
In fact, $\mathring{A} = \bigcup \{U : U \text{ is open and } U \subseteq A\}$ and $\overline{A} = \bigcap \{F : F \text{ is closed and } A \subseteq F\}$.

Sequences

Definition (Sequence)

Let (X, d) be a metric space. A sequence is an ordered list of points x_n , $n \in \mathbb{N}$, in X, denoted $(x_n)_{n \in \mathbb{N}}$. We say that a sequence $(x_n)_{n \in \mathbb{N}}$ converges to a point $x \in X$ if

Recall: $\overline{A} = \xi x \in X$: $\forall \xi > 0$ $B_{\xi}(x) \cap A \neq \emptyset$

Let (X, d) be a metric space, and let $A \subseteq X$. Then \overline{A} is equal to the set of points in X which are limits of a sequence in A.

Proof.
=) Let
$$x \in \overline{A}$$
. Then by definition, $\forall E > O$ $B_E(X) \land A \neq \emptyset$.
In particular, this first rive for $E = \pi$, $n \in \mathbb{N}$.
For any $n \in \mathbb{N}$, we can choose $x_n \in A$ s.t. $x_n \in B_{V_n}(X)$.
Therefore $d(X, x_n) \leftarrow \pi$. Since $\pi \downarrow O$ monotonically,
 $X_n \rightarrow X$.

Corollary

A set $F \subseteq X$, where (X, d) is a metric space, is closed if and only if every sequence in F which converges in X converges to a point in F.

Remark:

Cluster points of a set

Definition

Let (X, d) be a metric space and $A \subseteq X$. A point $x \in X$ is a *cluster point* of A (also called accumulation point) if for every $\epsilon > 0$, $B_{\epsilon}(x)$ contains infinitely many points in A.

 $x \in X$ is a cluster point of $A \subseteq X$ where (X, d) is a metric space if and only if there exists a sequence of points $x_n \in A$, $n \in \mathbb{N}$, such that $x_n \to x$.

Proof.

Combining the previous result with the limit characterization of closure gives the following:

Corollary For $A \subseteq X$, (X, d) a metric space, we have $\overline{A} = A \cup \{x \in X : x \text{ is a cluster point of } A\}.$

Cauchy sequences

Definition (Cauchy sequence)

Let (X, d) be a metric space. A sequence denoted $(x_n)_{n \in \mathbb{N}} \in X$ is called a *Cauchy* sequence if

÷

Let (X, d) be a metric space, and let $(x_n)_{n \in \mathbb{N}}$ be a convergent sequence in X. Then $(x_n)_{n \in \mathbb{N}}$ is Cauchy.

Proof. Let
$$\varepsilon > 0$$
. Let $(x_n)_{n \in \mathbb{N}}$ be a convergent sequence
in X which converges to some $x \in X$. Then $\exists n_{\varepsilon} \in \mathbb{N}$
 $s.t. d(x, x_n) < \not\in \mathcal{A}$ $\exists n \geq n_{\varepsilon}$.
Let $n_1 m \geq n_{\varepsilon}$. By the triangle inequality,
 $d(x_n, x_m) \leq d(x_n, x_1) + d(x_m, x) < \not\in \mathcal{A} \leq \mathcal{A}$
 $= \varepsilon$

Definition

A metric space where every Cauchy sequence converges (to a point in the space) is called *complete*.

Example:

Proposition

Let (X, d) be a metric space, and let $Y \subseteq X$.

- (i) If X is complete and if Y is closed in X, then Y is complete.
- (ii) If Y is complete, then it is closed in X.

Subsequences

Definition

Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in a metric space (X, d). Let $(n_k)_{k \in \mathbb{N}}$ be a sequence of natural numbers with $n_1 < n_2 < \cdots$. The sequence $(x_{n_k})_{k \in \mathbb{N}}$ is called a *subsequence* of $(x_n)_{n \in \mathbb{N}}$. If $(x_{n_k})_{k \in \mathbb{N}}$ converges to $x \in X$, we call x a *subsequential limit*.

Example $((-1)^n)_{n\in\mathbb{N}} = \{-1, 1, -1, 1, -1, 1, -1, \dots, -1, \dots,$ This sequence diverges. The subsequences (-1)^{an})ne in and (C-1)^{an-1})ne in converge to 1 and -1, respectively

A sequence $(x_n)_{n \in \mathbb{N}}$ in a metric space (X, d) converges to $x \in X$ if and only if every subsequence of $(x_n)_{n \in \mathbb{N}}$ also converges to x.

Proof continued Let
$$E > 0$$
 be arbitrary. $\exists n_E \in \mathbb{N}$
such that $d(Xn,X) \land E \quad \forall n \ge h_E$. Choose
 k_E such that $n_{k_E} \ge n_E$. This must exist
since $(n_K)_{K \in \mathbb{N}}$ is strictly increasing.
Then $\forall K \ge K_E$, $d(Xn_{K_1}, X) \land E$.
.... $Xn_K \rightarrow X$

References

Charles C. Pugh (2015). *Real Mathematical Analysis*. Undergraduate Texts in Mathematics. https://link-springer-com.myaccess.library.utoronto.ca/book/10.1007/978-3-319-17771-7

Runde ,Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Zwiernik, Piotr (2022). *Lecture notes in Mathematics for Economics and Statistics*. url: http://84.89.132.1/ piotr/docs/RealAnalysisNotes.pdf

