Exercises for Module 5: Metric Spaces III

1. Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$. Prove that

f is Lipschitz continuous $\,\Rightarrow\, f$ is uniformly continuous $\,\Rightarrow\, f$ is continuous.

Provide examples to show that the other directions do not hold.

(1) f is Lipschitz => f is uniformly continuous
Suppose f:X=Y is Lipschits with Lipschits constant K>O.
Let E>D arbitrary. Choose
$$S = E/K > O$$
. Then if $x_{1, K_0} \in X$ s.t. $d_X(x_{1, K_0}) < S = E/K_y$.
then $d_Y(f(x_1), f(x_0)) \leq K d_X(x_{1, K_0}) < K E/K = E$. Thus f is uniformly
Cont. by det. Lo by det of Lipschitz cont.
(2) Example of f that is unif cont but not Lipschitz.
Let $f(x) = AX^2$, $f(0, || = [0, 1]$
For $E>O$, choose $S = E$. Then for any $x_y \in [0, 1]$, if $|x_y| < S = E^2$, then
 $|R - Ay|^2 \leq ||x_1 - Ay|| ||x_1 + Ay|| = |x_1 - y| < E^2$ $\implies ||AX - Ay|| < E$
Then $d_X(x_0, x_1) = (0, 1]$
Homover, f is not Lipschitz.
Then $d_X(g[0, 1]), ||x_1 - Ay|| = ||x_1 - y|| < E^2$ $\implies ||AX - Ay|| < E$
Homover, f is not Lipschitz.
Then $d_X(g[0, 1]), ||x_1 - Ay|| = ||x_1 - y|| < E^2$ $\implies ||AX - Ay|| < E$
(3) f is unif cont. $\implies f$ is contained it in the it is.
Take S to be the one from the definitions (using the $E - S$ def of continuity).
Take S to be the one from the definitions (using the $E - S$ def of continuity).
Take S to be the one from the definitions (using the $E - S$ def of continuity).
Take S to be the one from the definitions (using the $E - S$ def of continuity).
Take S to be the one from the definitions (using the $E - S$ def of continuity).
Take S to be the one from the definitions (using the $E - S$ def of continuity).
Take S to be the one from the definitions (using the $E - S$ def of continuity).
Take S to be the one form the definitions (using the $E - S$ def of continuity continues.
(4) Example of a function which is continuous but not cuitermity continues.
Suppose in order to derive a contradiction that it is uniformly continues.
Then for any $E > 0 = S > 0 < T + X_2 (S \times W + S = (okay since ||x_2|| = S + S)$
Then $\frac{S}{S} ||x_1 + x_2|| < E$. Choose $E = 1$ and $y = x_1 + \frac{S}{S}$ (okay since $||x_2|| = \frac{S}{S} < \frac{S}{S} = 1 + \frac{S}{S} + \frac{S}{S} < 1$
 $\implies ||x_2|| = \frac{S}{S} > 1 + \frac{S}{S} < 1$
 $\implies ||x_2|| = \frac{S}{S} > 1 + \frac{S}{S} < 1$
 $\implies ||x_2|| = \frac{S}{S} > 1 + \frac{$

2. Show that the function $f(x) = \frac{1}{2} \left(x + \frac{5}{x}\right)$ has a unique fixed point on $(0, \infty)$. What is it? (Hint: you will have to restrict the interval.)

We need
$$|f(x) - f(y)| \leq k |x-y|$$
 for $k \in [a, b] \in x, y \in X$. We can
pick $X \subset (a, \infty)$.
 $|f(x) - f(y)| = |\frac{1}{2} (x+\frac{x}{2}) - \frac{1}{2} (y+\frac{x}{2})|$
 $= \frac{1}{2} |x-y + \frac{x}{2} - \frac{x}{2}|$
 $= \frac{1}{2} |x-y - \frac{x}{2} - \frac{x}{2}|$
 $= \frac{1}{2} |x-y - \frac{x}{2} - \frac{x}{2}|$
 $= \frac{1}{2} |x-y - \frac{x}{2} - \frac{x}{2}|$
So we need $\frac{1}{2} |1-\frac{x}{2}| \leq x, x \in [0, i]$. Take $k = \frac{1}{2}$.
 $\Rightarrow -\frac{1}{2} \in [-\frac{x}{2}] = \frac{2}{2}$
 $\Rightarrow -\frac{1}{2} \in [-\frac{x}{2}] = \frac{2}{2}$
 $\Rightarrow -\frac{1}{2} \in [-\frac{x}{2}] = \frac{2}{2} \leq xy$
 $\Rightarrow \frac{1}{2} \geq \frac{1}{2} = \frac{2}{2} = \frac{2}{2} = \frac{1}{2}$
 $\Rightarrow \frac{1}{2} \geq \frac{1}{2} = \frac{2}{2} = \frac{2}{2} = \frac{1}{2} = \frac{1}{2} |x-\frac{x}{2} - \frac{1}{2} + \frac{x}{2}|$
If $x = y, need x^{2} \geq \frac{1}{2}$
 $p = \frac{1}{2} |x-y|$ is complete since it is a closed subset
of \mathbb{R} . Let $x = [\frac{1}{2}, \infty)$. X is complete since it is a closed subset
of \mathbb{R} . Let $x = [\frac{1}{2}, \infty)$. X is complete since it is a closed subset
 $= \frac{1}{2} |x-y| |1 - \frac{x}{2}|$
 $= \frac{1}{2} |x-y| |1 - \frac{x}{2}|$
 $= \frac{1}{2} |x-y| |1 - \frac{x}{2}|$
 $= \frac{1}{2} |x-y| |1 - \frac{x}{2}|$
Thus f is a contraction of $w | (correstant k = \frac{4}{5} | x-\frac{y}{5}|$
To justify that there is no other fixed point on
 $(0, 5\pi)$, we note that
 $f(\frac{1}{2}) = \frac{1}{2} (\frac{1}{2} + \frac{1}{3} + \frac{1}{3} > \frac{5}{43}$

and since the function is decreasing on $(0, 5/\sqrt{13})$ $(f'(x)=\frac{1}{2}(1-5x^2)<0$ if $x < 5/\sqrt{13})$,

3. Prove the following: If two metrics are strongly equivalent then they are equivalent.

Proof. Let X be a set and d, do be two metrics on X.
Suppose they are strongly equivalent, i.e. for every X, y e X

$$\exists d, \beta > 0$$
 s.t.
 $\alpha d_1(X, y) = d_2(X, y) = (\beta d_1(X, y)).$
Let f be the identity map from (X, d_1) to (X, d_2) . We show it
is continuous using $\ell - \delta$ definition.
Let $\delta > 0$ be arbitrary. Choose $\delta = \frac{\delta}{\beta}$. Then if $d_1(X,y) \cdot \delta = \frac{\delta}{\beta}$, we have
 $d_2(f(x), f(y)) = d_2(x,y) = \frac{\delta}{\delta} d_1(X,y) - \frac{\delta}{\delta} \frac{\delta}{\beta} = \frac{\delta}{\delta}$, so f is cont.
Similarly, for the id. map from (X, d_1) to (X, d_1) : let $\delta > 0$. Choose $\delta = \alpha \delta$.
Then $d_1(X,y) = \frac{1}{\alpha} d_2(X,y) < \frac{1}{\alpha} \alpha \delta \delta = \frac{\delta}{\delta}$, so it is continuous as well.

4. Let (X, d) be a metric space and $\{A_i\}_{i \in I}$ be a collection of subsets of X. Show that

$$\bigcup_{i\in I}\overline{A_i}\subseteq \overline{\bigcup_{i\in I}A_i}.$$

Show that if the collection is finite, the two sets are equal.

First we show
$$\bigcup_{i \in I} A_i \subseteq \bigcup_{i \in I} A_i$$
. Let $\chi \in \bigcup_{i \in I} A_i$. Then $\exists i \in I \leq 1$.
 $\chi \in A_i^2 \Rightarrow \forall E > 0 \quad B_E(\chi) \land A_i^2 \neq \emptyset$.
 $\Rightarrow \forall E > 0 \quad B_E(\chi) \land (\bigcup_{i \in I} A_i) \neq \emptyset$
 $\Rightarrow \chi \in (\bigcup_{i \in I} A_i)$

Next, suppose the collection is finite. We show
$$\bigcup_{i=1}^{n} A_{i} \subseteq \bigcup_{i=1}^{n} A_{i}$$
.
First, we note that $\bigcup_{i=1}^{n} A_{i}$ is closed. By the remark
from class, $\bigcup_{i=1}^{n} A_{i} = \bigwedge_{i=1}^{n} E_{i} \in F$ is closed and $\bigcup_{i=1}^{n} A_{i} \in F_{i}^{n}$.
Since $\bigcup_{i=1}^{n} A_{i} \subseteq \bigcup_{i=1}^{n} A_{i}$, we conclude $\bigcup_{i=1}^{n} A_{i} \subseteq \bigcup_{i=1}^{n} A_{i}$.

5. Let (X, d) be a metric space and $\{A_i\}_{i \in I}$ be a collection of subsets of X. Prove that

$$\overline{\bigcap_{i\in I} A_i} \subseteq \bigcap_{i\in I} \overline{A_i}.$$

Find a counterexample that shows that equality is not necessarily the case.

Since
$$A_i \subseteq \overline{A_i} \cong \bigcap_{i \in I} A_i \cong \bigcap_{i \in I} \overline{A_i}$$
.
Since $\bigcap_{i \in I} \overline{A_i}$ is closed, $\overline{\bigcap_{i \in I} A_i} \subseteq \{F: F \text{ closed and } \bigcap_{i \in I} A_i \subseteq F\} \subseteq \bigcap_{i \in I} \overline{A_i}$.
Counterexample where $\bigcap_{i \in J} \overline{A_i} \not\in \bigcap_{i \in I} A_i$:
Let $A_i = [O_i^i]$, $A_a = (I_i^a)$, $d = \text{Euclidean metric on } \mathbb{R}$.
Then $\overline{A_i} = [O_i^i]$, $\overline{A_a} = [I_i^a]$, so $\bigcap_{i \in I, a} \overline{A_i} = \{I\}$.
But $(\bigcap_{i \in I} A_i^i) = \overline{p} = p$.

6. Let (X, d) be a metric space and $A \subseteq X$ be dense. Show that if $A \subseteq B \subseteq X$, then B is dense as well.

het ASX be donse. Then
$$\overline{A} = X$$
. We want
to show that $A \subseteq B \subseteq X \implies \overline{B} = X$.
Clearly $\overline{B} \subseteq X$, so we show $X \subseteq \overline{B}$.
Let $A \subseteq B$. Then $A \subseteq B \subseteq \overline{B}$.
Since \overline{B} is a closed set that contains A ,
 $\overline{A} \subseteq \overline{B}$ by Remark 3.16.
Thus $\overline{A} = X \subseteq \overline{B}$, so $\overline{B} = X$ and
 \overline{B} is dense.