Module 5: Metric spaces III Operational math bootcamp

Emma Kroell

University of Toronto

July 18, 2023

Last time

Looked at open and closed sets.

Discussed sequences, which includes Cauchy sequences and subsequences:

- Convergent sequence: $x_n \to x \Leftrightarrow \forall \epsilon > 0 \exists n_{\epsilon} \in \mathbb{N} \text{ s.t. } d(x_n, x) < \epsilon \text{ for all } n \geq n_{\epsilon}$
- Cauchy sequence: $\forall \epsilon > 0 \exists n_{\epsilon} \in \mathbb{N} \text{ s.t. } d(x_n, x_m) < \epsilon \text{ for all } n, m \geq n_{\epsilon}$
- Proved that a convergent sequence is Cauchy
- Discussed complete metric spaces, where all Cauchy sequences converge (like \mathbb{R} with the usual metric, absolute value)
- Proved that a sequence converges to x if and only if all subsequences converge to x

Outline for today

- Continuity
- Equivalent metrics
- Density and separability

Continuity

Definition

Let (X, d_X) and (Y, d_Y) be metric spaces, let $x_0 \in X$, and let $f : X \to Y$. f is *continuous* at x_0 if for every sequence $(x_n)_{n \in \mathbb{N}}$ in X that converges to x_0 , we have $\lim_{n\to\infty} f(x_n) = f(x_0)$.

We say that f is continuous if it is continuous at every point in X.

Theorem

Let (X, d_X) and (Y, d_Y) be metric spaces, let $x_0 \in X$, and let $f : X \to Y$. The following are equivalent:

- (i) f is continuous at x0 (previous definition)
- (ii) for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0))) < \epsilon$ for all $x \in X$ with $d_X(x, x_0) < \delta$
- (iii) for each $\epsilon > 0$, there is $\delta > 0$ such that $B_{\delta}(x_0) \subseteq f^{-1}(B_{\epsilon}(f(x_0)))$

(i) f is continuous at
$$x_0$$
. Every sequence (x_n) in X with $x_n \Rightarrow x_0$, $\lim_{x \to \infty} C_n = 0$ (ii) for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0))) < \epsilon$ for all $x \in X$ with $d_X(x, x_0) < \delta$
(iii) for each $\epsilon > 0$, there is $\delta > 0$ such that $B_{\delta}(x_0) \subseteq f^{-1}(B_{\epsilon}(f(x_0)))$
Proof. (i) \Rightarrow (ii) We prove the consequentive. $U(i) \Rightarrow U(i)$
 $\exists E_0 > 0$ s.t. $\forall S > 0 \exists X_S \in X$ with $d_X(X_0, X_S) \perp S$ but
 $\exists X d_Y(f(X_0), f(X_S)) \ge E_0$. We need to find a sequence
in X that converges to x_0 but $f(x_n) \not\prec f(x_0)$.
Let $S = T_n$, nEIN. We pick our sequence using (K) ,
which converges to x_0 . Then $d_Y(f(x_0), f(X_n)) \ge E_0$
by $f(X)$ $\forall Y \in M$ interm $f(X_n) \not\neq -f(X_0)$.

Statistical Sciences UNIVERSITY OF TORONTO

(ii) ⇒ (iii) Follows from the definition of open ball and pre-image (exercise) (iii) \Rightarrow (i) (iii) $\forall \varepsilon > 0 = 35 > 0 \le t$. $B_{g}(x_{0}) \subseteq t^{-1}(B_{g}(f(x_{0})))$ Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in X that converges to x_0 . Let $\varepsilon > 0$ be arbitrary. By (iii), $\exists s > 0$ s.t. $B_s(x_0) \leq f^{-1}(B_{\varepsilon}(f(x_0)))$. If $x \in B_s(x_0)$, then dy (f(xo), f(x)) < E. Since (xn)new converges to xo, InelN s.t. d(xn,x) < S tn≥no. Therefore, $d_{Y}(f(x_{0}), f(x_{0})) \leq \xi \quad \forall n \geq n_{0} \quad b_{Y}(iii)$. Al Sciences RSITY OF TORONTO $\cdots f(x_{n}) \rightarrow f(x_{0}), \quad July 18, 2023 \quad 7/2$

Corollary

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f : X \to Y$. The following are equivalent:

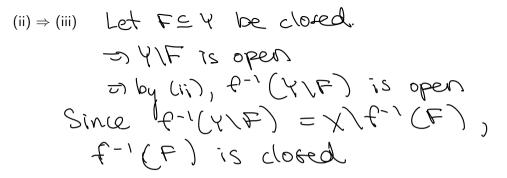
(i) f is continuous (ii) if $U \subseteq Y$ is open, then $f^{-1}(U)$ is open (iii) if $F \subseteq Y$ is closed, then $f^{-1}(F)$ is closed

We need the following results about sets and functions:

Let X and Y be sets and $f: X \to Y$. Let $A, B \subseteq Y$. Then $A \subseteq B \implies f^{-1}(A) \subseteq f^{-1}(B)$ $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$ (Exercise)

Proof. Let (X, d_X) and (Y, d_Y) be metric spaces and let $f : X \to Y$. (i) \Rightarrow (ii): Suppose f is continuous (at every point $x \in X$). Let USY be open. Let xef-'(U) Then f(x) &U. Since U is open, ZEO>O s.t. BE(f(x)) CU. By (iii) from the previous theorem, $\Xi S > 0 \text{ s.t.}$ $B_{S_{n}}(x) \subseteq f^{-1}(B_{\varepsilon_{0}}(f(x)), \text{ Since } B_{\varepsilon_{0}}(f(x)) \subseteq U,$ $= f^{-1}(B_{\mathcal{E}}(f(x))) \subseteq f^{-1}(\mathcal{U}) b_{\mathcal{H}}(\mathcal{F})$ 9/23

Thus for each XEF- (U), 38,>0 s.t. $B_{S_{\circ}}(x) \in f^{-1}(B_{\mathcal{E}_{\circ}}(f(x))) \subseteq f^{-1}(u)$: f'(u) is open. (ii) \Rightarrow (i) Let's use the definition of continuity (iii) . for x 4 X, 4 E> 0 38>0 S.L. B8(X) CH-1 (BE(f(X)) Let XEX and E>O. Since Br(f(w)) is open, So by (ii), f-1(BE(fx)) is also open. Since xef- (BE(E(x))), by the definition of open st, ∃ 8 > D s.t. Bg(x) Sf-1(B, (f(x)). Statistical Sciences UNIVERSITY OF TORONTO We're done. July 18, 2023 10/23



 $(iii) \Rightarrow (ii)$

exercise

Definition

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f : X \to Y$.

- f is uniformly continuous if for all $\epsilon > 0$, there exists $\delta > 0$ such that for every $x_1, x_2 \in X$ with $d_X(x_1, x_2) < \delta$, we have $d_Y(f(x_1), f(x_2))) < \epsilon$
- f is Lipschitz continuous if there exists a K > 0 such that for every $x_1, x_2 \in X$ we have $d_Y(f(x_1), f(x_2)) \le K d_X(x_1, x_2)$

Proposition

```
Let (X, d_X) and (Y, d_Y) be metric spaces and let f : X \to Y.
```

f is Lipschitz continuous \Rightarrow f is uniformly continuous \Rightarrow f is continuous

Proof is one of your exercises.

Contraction Mapping Theorem

Definition

Let (X, d) be a metric space and let $f : X \to X$. We say that $x^* \in X$ is a *fixed point* of f if $f(x^*) = x^*$.

Definition

Let (X, d) be a metric space and let $f : X \to X$. f is a *contraction* if there exists a constant $k \in [0, 1)$ such that for all $x, y \in X$, $d(f(x), f(y)) \le kd(x, y)$.

Observe that a function is a contraction if and only if it is Lipschitz continuous with constant K < 1.

Theorem (Contraction Mapping Theorem)

Suppose that $f : X \to X$ is a contraction and the metric space X is complete. Then f has a unique fixed point x^* .

Example

Let $f: \left[-\frac{1}{3}, \frac{1}{3}\right] \to \left[-\frac{1}{3}, \frac{1}{3}\right]$ be defined by the mapping $x \mapsto x^2$. Assume we use the standard Euclidean metric, d(x, y) = |x - y|. f has a unique fixed point because

(1)
$$[-\frac{1}{3}, \frac{1}{3}]$$
 is a complete metric space with 1.)
(a) Let $x,y \in [-\frac{1}{3}, \frac{1}{3}]$.
Then $|x^{a}-y^{a}| = |x+y||x-y| \leq \frac{2}{3}|x-y|$
 $\therefore f$ is a contraction with $K = \frac{2}{3}$

Definition (Equivalent metrics)

Two metrics d_1 and d_2 on a set X are *equivalent* if the identity maps from (X, d_1) to (X, d_2) and from (X, d_2) to (X, d_1) are continuous.

$$\mathcal{I}_{X} \times \mathcal{N}$$

Proposition

Two metrics d_1 , d_2 on a set X are equivalent if and only if they have the same open sets or the same closed sets.

Definition

Two metrics d_1 and d_2 on a set X are *strongly equivalent* if for every $x, y \in X$, there exists constants $\alpha > 0$ and $\beta > 0$ such

 $\alpha d_1(x,y) \leq d_2(x,y) \leq \beta d_1(x,y).$

If two metrics are strongly equivalent then they are equivalent. The proof of this is one of the exercises.

Example

÷

We show that the Euclidean distance (induced by 2-norm) and the metric induced by the ∞ -norm are equivalent on \mathbb{R}^n .

Density

Definition

UNIVERSITY OF

Let (X, d) be a metric space. A subset $A \subseteq X$ is called *dense* if $\overline{A} = X$.

Using the definition of closure,
$$A \in X$$
 is dense
if and only if $\forall X \in X, \forall E > D$, $B_E(X) \cap A \neq \emptyset$.

Why are dense sets important?

•

Examples

1. $(\mathbb{R}, |\cdot|)$ (D is dense in TR with $|\cdot|$

Archimedean prop: $\forall x, y \in \mathbb{R}$, $x \ge 0$, $\exists n \in \mathbb{N}$ 2. Let X be a set and define $d: X \times X \to \mathbb{R}$ by $d(x, y) = \begin{cases} 0, & x = y, \\ 1, & x \neq y. \end{cases}$

Definition

A metric space (X, d) is separable if it contains a countable dense subset.

Example:

Example

Define $\ell_{\infty} = \{(x_n)_{n \in \mathbb{N}} : x_n \in \mathbb{R}, \sup_{n \in \mathbb{N}} |x_n| < \infty\}$, the space of bounded real valued sequences. Endow ℓ_{∞} with a metric induced by the supremum norm, namely $d((x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}}) = \sup_{n \in \mathbb{N}} |x_n - y_n|$. Then ℓ_{∞} is **not separable** with respect to the topology induced by this metric.

Note: this proof relies on content from the cardinality section. Specifically, Cantor's theorem gives us that $|A| < |\mathcal{P}(A)|$ for any set A.

Proof.

References

Jiří Lebl (2022). *Basic Analysis I*. Vol. 1. Introduction to Real Analysis. https://www.jirka.org/ra/realanal.pdf

Runde, Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

