Exercises for Module 6: Metric Spaces IV

1. Let X be a set and define $d\colon X\times X\to [0,\infty)$ by

$$d(x,y) = \begin{cases} 0, & x = y, \\ 1, & x \neq y. \end{cases}$$

Show that $S \subseteq X$ is compact if and only if S is finite.

We showed in class that S finite =) S is compact
for any metric space (X,d).
We show S compact => S finite with the discrete
metric.
Assume S is compact. Then any open cover for S has a finite
subcover. Let
$$\varepsilon \varepsilon(0,1)$$
. Then $\varepsilon B_{\varepsilon}(x) \Im_{x \varepsilon S}$ is an open cover for S
and $\exists n \varepsilon W$ s.t $S \varepsilon \bigcup_{i=1}^{n} B_{\varepsilon}(x_i)$. Recall that $B_{\varepsilon}(x) = \varepsilon \chi_{S}$
for $\varepsilon \varepsilon \varepsilon (1)$. Thus $S \varepsilon \bigcup_{i=1}^{n} B_{\varepsilon}(x_i)$. Recall that $B_{\varepsilon}(x) = \varepsilon \chi_{S}$
 $for \varepsilon \varepsilon \varepsilon (1)$. Thus $S \varepsilon \bigcup_{i=1}^{n} \varepsilon \chi_{S} = \Im S \varepsilon \varepsilon \chi_{S}, ..., \chi_{N} \Im_{S}$
 $\therefore S$ is finite

2. Let (X, d) be a metric space and $K \subset X$ compact. Show that for all $\epsilon > 0$ there exists $\{x_1, x_2, \ldots, x_n\} \subseteq K$ such that for all $y \in K$ we have $d(y, x_i) < \epsilon$ for some $i = 1, \ldots, n$.

Let E>D and yEK, KCX compact. Since K is compact
and
$$\xi B_{\varepsilon}(x) S_{xeK}$$
 is an open cover for K, INEN
s.t. $K \subseteq \bigcup_{i=1}^{2} B_{\varepsilon}(x_i) \implies y \in \bigcup_{i=1}^{2} B_{\varepsilon}(x_i)$
 $\Longrightarrow \exists i \in \{1, ..., n\} s.t. y \in B_{\varepsilon}(x_i)$
 $\Longrightarrow \exists i \in \{2, ..., n\} s.t. d(x_i, y) < \xi$

3. Define the sequence $(a_n)_{n\in\mathbb{N}}$ by $a_1 = 2$ and

$$a_{k+1} = \frac{a_k + 5}{3}, \qquad k \ge 1.$$

Determine if the limit $\lim_{n\to\infty}a_n$ exists and, if so, calculate it.

Claim:
$$a_{k} \leq a_{k+1}$$
 $\forall k \geq 1$
Proof by induction. Base case: $a_{1}=a_{1}, a_{2}=\frac{2}{3} \leq 2=a_{1}$
Suppose the claim holds for some $n\geq 1$. Then
 $a_{n+1} \geq a_{n} \Rightarrow a_{n+1} \leq \sum a_{n+2} \leq a_{n+3}$
 $\Rightarrow a_{n+2} \geq a_{n+3}$
 \therefore The claim holds by induction.
Claim: $a_{k} \leq \frac{2}{3} \quad \forall k\geq 1$
By induction. Base case: $a_{1}=2 \leq \frac{5}{2}$.
If H : Assume $a_{n} \leq \frac{5}{3}$ for some $n\geq 1$.
Then $a_{n+1} = a_{n+3} \leq \frac{5}{2} + \frac{5}{3} = \frac{15}{6} = \frac{5}{3}$
 \therefore The claim holds by induction.
Therefore $(a_{k})_{k\in\mathbb{N}}$ is a bounded, monotone
Gequence. By the monotone convergence theorem,
 $\lim_{k \to \infty} a_{k}$ must exist.
We calculate: $\lim_{k \to \infty} a_{k+1} = \lim_{k \to \infty} a_{k} + \frac{5}{3}$
 $\Rightarrow \lim_{k \to \infty} a_{k+1} = \frac{5}{2} \lim_{k \to \infty} a_{k} + \frac{5}{3}$.

4. Let $(x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}}$ be bounded sequences in \mathbb{R} . Show that

$$\limsup_{n \to \infty} (x_n + y_n) \le \limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n$$

and give an example where the inequality is strict.

Lemma Xn -> O => 1xn -> O

 $= \sum_{k=1}^{n} \sum$

Similar.