1. Let $X$ be a set and define $d: X \times X \rightarrow[0, \infty)$ by

$$
d(x, y)= \begin{cases}0, & x=y \\ 1, & x \neq y\end{cases}
$$

Show that $S \subseteq X$ is compact if and only if $S$ is finite.
We showed in class that $S$ finite $\Rightarrow S$ is compact for any metric space $(x, d)$.
We show $S$ compact $\Rightarrow S$ finite with the discrete metric.
Assume $S$ is compact. Than any open cover for $S$ has a finite subcover. Let $\varepsilon \in(0,1)$. Then $\left\{B_{\varepsilon}(x)\right\}_{x \in S}$ is an open cover for $S$ and $\exists n \in \mathbb{N}$ s.t $S \subseteq \bigcup_{i=1}^{n} B_{\varepsilon}\left(x_{i}\right)$. Recall that $B_{\varepsilon}(x)=\{x\}$ for $O \subset \varepsilon<1$. Thus $S \subseteq \bigcup_{i=1}^{n}\left\{x_{i}\right\} \Rightarrow S \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$
$\therefore S$ is finite
2. Let $(X, d)$ be a metric space and $K \subset X$ compact. Show that for all $\epsilon>0$ there exists $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subseteq K$ such that for all $y \in K$ we have $d\left(y, x_{i}\right)<\epsilon$ for some $i=1, \ldots, n$.

Let $\varepsilon>0$ and $y \in K, K \subset X$ compact. Since $K$ is compact and $\left\{B_{\varepsilon}(x)\right\}_{x \in K}$ is an open cover for $K, \exists n \in \mathbb{N}$ s.t. $K \subseteq \bigcup_{i=1}^{n} B_{\varepsilon}\left(x_{i}\right) \Rightarrow y \in \bigcup_{i=1}^{n} B_{\varepsilon}\left(x_{i}\right)$

$$
\begin{aligned}
& \Rightarrow \exists i \in\left\{l_{1}, \ldots n\right\} \text { sot. } y \in B_{\varepsilon}\left(x_{i}\right) \\
& \Rightarrow \exists i \in\left\{(, \ldots, n\} \text { s.t. } d\left(x_{i}, y\right)<\varepsilon\right.
\end{aligned}
$$

3. Define the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ by $a_{1}=2$ and

$$
a_{k+1}=\frac{a_{k}+5}{3}, \quad k \geq 1
$$

Determine if the limit $\lim _{n \rightarrow \infty} a_{n}$ exists and, if so, calculate it.
Claim: $\quad a_{k} \leqslant a_{k+1} \quad \forall k \geq 1$
Proof by induction. Base case: $a_{1}=2, a_{2}=\frac{7}{3}<2=a_{1}$
Suppose the claim holds for some $n \geq 1$. Then

$$
\begin{aligned}
a_{n+1} \geq a_{n} & \Rightarrow a_{n+1}+5 \geq a_{n}+5 \\
& \Rightarrow \frac{a_{n+1}+5}{3} \geq \frac{a_{n}+5}{3} \\
& \Rightarrow a_{n+2} \geq a_{n+1}
\end{aligned}
$$

$\therefore$ The claim holds by induction.
Claim: $a_{k} \subset \frac{5}{2} \quad \forall k \geq 1$
By induction. Base case: $a_{1}=2<5 / 2$.
IHH: Assume $a_{n}<\frac{5}{2}$ for solve $n \geq 1$.
Then $a_{n+1}=\frac{a_{n}+5}{3}<\frac{\frac{5}{8}+5}{3}=\frac{15}{6}=\frac{5}{2}$
$\therefore$ The claim holds by induction.
Therefore $\left(a_{k}\right)_{k \in \mathbb{N}}$ is a bounded, monotone sequence. By the monotone convergence theorem, $\lim _{k \rightarrow \infty} a_{k}$ must exist.
We calculate: $\lim _{k \rightarrow \infty} a_{k+1}=\lim _{k \rightarrow \infty} \frac{a_{k}+5}{3}$

$$
\begin{gathered}
\Rightarrow \lim _{k \rightarrow \infty} a_{k+1}=\frac{1}{3} \lim _{k \rightarrow \infty} a_{k}+\frac{5}{3} \\
2 \Rightarrow \lim _{k \rightarrow \infty} a_{k+1}=\frac{5}{2} .
\end{gathered}
$$

4. Let $\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}}$ be bounded sequences in $\mathbb{R}$. Show that

$$
\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leq \limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}
$$

and give an example where the inequality is strict.
Claim: $\sup _{k=n}^{\text {and }}\left(x_{k}+y_{k}\right) \leq \sup _{k=h} x_{k}+\sup _{k=h} y_{k}$
Let $\bar{x}_{n}=\sup _{k \geq n} x_{k}, \bar{y}_{n}=\operatorname{supp}_{k=n} y_{k}$. Then $\bar{x}_{n} \geq x_{k} \quad \forall k \geq n$
and $\bar{y}_{n} \geq y_{k} \quad \forall k \geq n$. Therefore $\bar{x}_{n}+\bar{y}_{n} \geq x_{k}+y_{k} \quad \forall k \geq n$
$\Rightarrow \bar{x}_{k}+\bar{y}_{k}$ is an upper bound for $\left\{x_{k}+y_{k} \quad k \geq n\right\}$
$\Rightarrow \Rightarrow x^{2}$

$$
\Rightarrow \sup _{k \geq h}\left(x_{k}+y_{k}\right) \leq \bar{x}_{n}+\bar{y}_{n}=\sup _{k \geq n} x_{k}+\sup _{k \geq n}^{0} y_{k}
$$

since the supremum is the least upper bound
Then $\begin{aligned} & \limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=\lim _{n \rightarrow \infty} \sup _{k \geq n}\left(x_{k}+y_{k}\right) \leq \lim _{n \rightarrow \infty} \sup _{k \geq n} x_{k}+ \\ &=\limsup _{n \rightarrow \infty} x_{n}+1 \\ & \text { Example where }<\text { is strict: } x_{n}=(-1)^{n}, y_{n}=(-1)^{n+1} \text { int } n \in \mathbb{N} \\ & \text { limsup }\left(x_{n}+y_{n}\right)=0<2=\operatorname{limsug} x_{k}+\limsup _{k} \sup _{k}\end{aligned}$
$\limsup _{n \rightarrow 00}\left(x_{n}+y_{n}\right)=0<2<\lim _{n \rightarrow \infty} \operatorname{sum}_{n} x_{k} \rightarrow \lim _{n \rightarrow \infty} \sup _{n} y_{k}$
5. Let $\left(x_{n}\right)_{n \in N}$ be a sequence in $\mathbb{R}$. Show that $\lim _{n \rightarrow \infty} x_{n}=0$ if and only if $\lim \sup _{n \rightarrow \infty}\left|x_{n}\right|=0$.
(5) Suppose $\lim _{n \rightarrow \infty} x_{n}=0$. Then by the theorem in lecture, $\limsup _{n \rightarrow \infty} x_{n}=0$. This implies $\limsup _{n \rightarrow \infty}\left|x_{n}\right|=0$.
(E )Suppose $\limsup _{n \rightarrow \infty}\left|x_{n}\right|=0$.
Since $\limsup _{n \rightarrow \infty}\left|x_{n}\right| \geq \liminf _{n \rightarrow \infty}\left|x_{n}\right|$ and $\left|x_{n}\right| \geq 0 \forall n \Rightarrow \liminf _{n \rightarrow \infty}\left|x_{n}\right| \geq 0$, we have

$$
\begin{aligned}
O & =\limsup _{n \rightarrow \infty}\left|x_{n}\right| \geq \liminf _{n \rightarrow \infty}\left|x_{n}\right| \geq 0 \\
& \Rightarrow \limsup _{n \rightarrow \infty}\left|x_{n}\right|=0=\liminf _{n \rightarrow \infty}\left|x_{n}\right|
\end{aligned}
$$

$\Rightarrow \lim _{n \rightarrow \infty}\left|x_{n}\right|=0$ by theorem from class

$$
\Rightarrow \lim _{n \rightarrow \infty} x_{n}=0
$$

Lemma $x_{n} \rightarrow 0 \Leftrightarrow\left|x_{n}\right| \rightarrow 0$
$\Leftrightarrow$ Suppose $x_{n} \rightarrow 0$. Then $\forall \varepsilon>0 \exists n_{\varepsilon} \in \mathbb{N}$ s.t. $\left|x_{n}-0\right|<\varepsilon \forall n \geq n_{\varepsilon}$, i.e. $\left|x_{n}\right|<\varepsilon \forall n \geq n_{\varepsilon}$. Let $\varepsilon>0$ arbitrary. Choose $n=n_{\varepsilon}$, then $\forall n \geq n_{\varepsilon},\left|\left|x_{n}\right|-0\right|=\left|x_{n}\right|<\varepsilon$ as required.
E Similar.

